Abstract. Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern. We extend Ostrom's social-ecological systems framework to consider the long-term persistence of PAs, as a form of land use embedded in social-ecological systems, with important crossscale feedbacks. Most notably, we highlight the cross-scale influences and feedbacks on PAs that exist from the local to the global scale, contextualizing PAs within multi-scale socialecological functional landscapes. Such functional landscapes are integral to understand and manage individual PAs for long-term sustainability. We illustrate our conceptual contribution with three case studies that highlight cross-scale feedbacks and social-ecological interactions in the functioning of PAs and in relation to regional resilience. Our analysis suggests that while ecological, economic, and social processes are often directly relevant to PAs at finer scales, at broader scales, the dominant processes that shape and alter PA resilience are primarily social and economic.
Key methods discussed in this chapterModelling methods: System dynamics (group model building, mediated modelling, shared vision planning), agent-based models (ARDI), role-playing games (Wat-A-Game), expert models (Bayesian networks, fuzzy cognitive maps), state-and-transition models, soft system methodologies (rich pictures, concept maps, decision trees, cognitive maps) Integrated approaches: Collaborative modelling, companion modelling, participatory system analysis Connections to other chaptersMethods for generating data and systems scoping (Chapters 5-8), specifically participatory data-collection methods (Chapter 8) or interviews and surveys (Chapter 7), may provide working material or monitoring and evaluation support within participatory modelling processes. Facilitated dialogue methods (Chapter 9) may smooth participatory modelling workshops. Future analysis (Chapter 10), scenario development (Chapter 11) or serious games (Chapter 12) may be articulated with participatory models within broader participatory resilience assessment (Chapter 14) or action research (Chapter 15) projects. Expert modelling (Chapter 16), dynamical systems modelling (Chapter 26), state-and-transition modelling (Chapter 27) and agent-based modelling (Chapter 28) cover the most common types of modelling methods used in participatory modelling, and participatory modelling may use institutional analysis (Chapter 22) conceptual frameworks.
Private Protected Areas (PPAs) often use wildlife-based ecotourism as their primary means of generating business. Achieving tourist satisfaction has become a strong driving goal in the management of many PPAs, often at the expense of biodiversity. Many extralimitral species, those which historically did not occur in an area, are stocked in PPAs with the intention of increasing ecotourism attractions. Even though the ecological and economic costs of stocking these species are high, the social benefits are not understood and little information exists globally on the ecotourism role of extralimital species. This study assessed the value of stocking extralimital species using questionnaire-based surveys and observing tourists in Shamwari Private Game Reserve in the Eastern Cape Province of South Africa. No difference was found between indigenous and extralimital species with regards to the tourists’ weighted scoring system, average amount tourists were willing to pay, total viewing time, average viewing time or the likelihood of stopping to view species when encountered on game drives. During game drives a strong preference was found for the elephant (Loxodonta africana), lion (Panthera leo), leopard (Panthera pardus) and cheetah (Acynonix jubatus). With the exception of the cheetah, these species are all members of the “big five” and are indigenous. Species availability and visibility, however, may influence the amount of time tourists spend at an animal sighting. Our analysis suggests that certain extralimital species (typically larger and charismatic species) contribute to tourist satisfaction, while particularly the smaller extralimital species add little to the game viewing experience, but add to the costs and risks of the PPAs. We recommend that extralimital species introductions for ecotourism purposes should be approached with caution with regards to the risks to the sustainability of PPAs.
ABSTRACT. It is extremely important for biodiversity conservation that protected areas are resilient to a range of potential future perturbations. One of the least studied influences on protected area resilience is that of disease. We argue that wildlife disease (1) is a social-ecological problem that must be approached from an interdisciplinary perspective; (2) has the potential to lead to changes in the identity of protected areas, possibly transforming them; and (3) interacts with conservation both directly (via impacts on wild animals, livestock, and people) and indirectly (via the public, conservation management, and veterinary responses). We use southern African protected areas as a case study to test a framework for exploring the connections between conservation, endemic disease, and socialecological resilience. We first define a set of criteria for the social-ecological identity of protected areas. We then use these criteria to explore the potential impacts of selected diseases (foot-and-mouth disease, anthrax, malaria, rabies, rift valley fever, trypanosomiasis, and canine distemper) on protected area resilience. Although endemic diseases may have a number of direct impacts on both wild animals and domestic animals and people, the indirect pathways by which diseases influence social-ecological resilience also emerge as potentially important. The majority of endemic pathogens found in protected areas do not kill large numbers of wild animals or infect many people, and may even play valuable ecological roles; but occasional disease outbreaks and mortalities can have a large impact on public perceptions and disease management, potentially making protected areas unviable in one or more of their stated aims. Neighboring landowners also have a significant impact on park management decisions. The indirect effects triggered by disease in the human social and economic components of protected areas and surrounding landscapes may ultimately have a greater influence on protected area resilience than the direct ecological perturbations caused by disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.