p53 is a tumour suppressor that regulates the cellular response to genotoxic stresses. p53 is a short-lived protein and its activity is regulated mostly by stabilization via different post-translational modifications. Here we report a novel mechanism of p53 regulation through lysine methylation by Set9 methyltransferase. Set9 specifically methylates p53 at one residue within the carboxyl-terminus regulatory region. Methylated p53 is restricted to the nucleus and the modification positively affects its stability. Set9 regulates the expression of p53 target genes in a manner dependent on the p53-methylation site. The crystal structure of a ternary complex of Set9 with a p53 peptide and the cofactor product S-adenosyl-l-homocysteine (AdoHcy) provides the molecular basis for recognition of p53 by this lysine methyltransferase.
SummaryThe mechanisms contributing to transcription-associated genomic instability are both complex and incompletely understood. Although R-loops are normal transcriptional intermediates, they are also associated with genomic instability. Here, we show that BRCA1 is recruited to R-loops that form normally over a subset of transcription termination regions. There it mediates the recruitment of a specific, physiological binding partner, senataxin (SETX). Disruption of this complex led to R-loop-driven DNA damage at those loci as reflected by adjacent γ-H2AX accumulation and ssDNA breaks within the untranscribed strand of relevant R-loop structures. Genome-wide analysis revealed widespread BRCA1 binding enrichment at R-loop-rich termination regions (TRs) of actively transcribed genes. Strikingly, within some of these genes in BRCA1 null breast tumors, there are specific insertion/deletion mutations located close to R-loop-mediated BRCA1 binding sites within TRs. Thus, BRCA1/SETX complexes support a DNA repair mechanism that addresses R-loop-based DNA damage at transcriptional pause sites.
In cells, sequence-specific transcription factors must search through an entire genome to find their target sites in promoters. Such sites may be identified by using one-dimensional (linear diffusion) and/or three-dimensional (association/dissociation) mechanisms. We show here that wild-type p53 possesses the ability to linearly diffuse on DNA. p53 lacking its C terminus is incapable of such sliding along DNA, while the isolated C terminus of p53 is even more effective than the full-length protein at one-dimensional linear diffusion. Importantly, neither acetylation-mimicking mutations nor phosphorylation of residues within the C terminus stimulates linear diffusion by p53. Supporting these in vitro observations, we found that C-terminally deleted p53 (p53Delta30) expressed at physiological levels is deficient in binding to and transactivating downstream promoters in vivo. Therefore, our data show that the C terminus is a positive regulator of DNA binding in vivo and in vitro, and indicate that the mechanism may involve linear diffusion.
Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx−/− revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.