The present study examined the effects of a visual-based biofeedback training on improving balance challenges in autism spectrum disorder (ASD). Twenty-nine youth with ASD (7-17 years) completed an intensive 6-week biofeedback-based videogame balance training. Participants exhibited training-related balance improvements that significantly accounted for postural-sway improvements outside of training. Participants perceived the training as beneficial and enjoyable. Significant moderators of training included milder stereotyped and ritualistic behaviors and better starting balance. Neither IQ nor BMI moderated training. These results suggest that biofeedback-based balance training is associated with balance improvements in youth with ASD, most robustly in those with less severe repetitive behaviors and better starting balance. The training was perceived as motivating, further suggesting its efficacy and likelihood of use.
Microstructure of the thalamus, a key sensory and motor brain area, appears to develop differently in individuals with autism spectrum disorder (ASD). Microstructure is important because it informs us of the density and organization of different brain tissues. During childhood, thalamic microstructure was distinct in the ASD group compared to the typically developing group. However, these group differences appeared to narrow with age, suggesting that the thalamus continues to dynamically change in ASD into adulthood.
Background Postural stability difficulties are commonly reported in people on the autism spectrum. However, it is unclear whether unsteady surfaces may exacerbate postural stability difficulties in children and adolescents with autism spectrum disorder (ASD). Understanding balance on unsteady surfaces is important because uneven surfaces are commonly encountered in daily life. Methods Twenty-one youth on the autism spectrum and 16 youth with typical development (ages 6-16 years, IQ ≥ 79) stood on both a fixed and unsteady (tiltable) platform, and center of pressure was measured. Results The group with ASD exhibited differentially more postural sway on the unsteady surface compared to the group with typical development. However, there was substantial variability within the ASD group. Follow-up analyses suggested that much of the variability in postural sway in the ASD group was accounted for by IQ. Conclusions Clinically, these findings suggest that not all individuals with ASD struggle more with postural stability on unsteady surfaces. Instead children and adolescents with ASD and below-average IQ may have particular difficulty on unsteady surfaces and may require accommodations. Further, these findings lay the groundwork for future research to investigate the underlying mechanisms of poorer balance across the autism spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.