Bayesian methods are theoretically optimal in many situations. Bayesian model averaging is generally considered the standard model for creating ensembles of learners using Bayesian methods, but this technique is often outperformed by more ad hoc methods in empirical studies. The reason for this failure has important theoretical implications for our understanding of why ensembles work. It has been proposed that Bayesian model averaging struggles in practice because it accounts for uncertainty about which model is correct but still operates under the assumption that only one of them is. In order to more effectively access the benefits inherent in ensembles, Bayesian strategies should therefore be directed more towards model combination rather than the model selection implicit in Bayesian model averaging. This work provides empirical verification for this hypothesis using several different Bayesian model combination approaches tested on a wide variety of classification problems. We show that even the most simplistic of Bayesian model combination strategies outperforms the traditional ad hoc techniques of bagging and boosting, as well as outperforming BMA over a wide variety of cases. This suggests that the power of ensembles does not come from their ability to account for model uncertainty, but instead comes from the changes in representational and preferential bias inherent in the process of combining several different models.
Abstract-Selecting an effective method for combining the votes of classifiers in an ensemble can have a significant impact on the ensemble's overall classification accuracy. Some methods cannot even achieve as high a classification accuracy as the most accurate individual classifying component. To address this issue, we present the strategy of Aggregate Confidence Ensembles, which uses multiple measures to estimate a classifier's confidence in its predictions on an instance-by-instance basis. Using these confidence estimators to weight the votes in an ensemble results in an overall average increase in classification accuracy compared to the most accurate classifier in the ensemble. These aggregate measures result in higher classification accuracy than using a collection of single confidence estimates. Aggregate Confidence Ensembles outperform three baseline ensemble creation strategies, as well as the methods of Modified Stacking and Arbitration, both in terms of average classification accuracy and algorithm-by-algorithm comparisons in accuracy over 36 data sets.
Selecting an effective method for combining the votes of base inducers in a multiclassifier system can have a significant impact on the system's overall classification accuracy. Some methods cannot even achieve as high a classification accuracy as the most accurate base classifier. To address this issue, we present the strategy of aggregate certainty estimators, which uses multiple measures to estimate a classifier's certainty in its predictions on an instance-by-instance basis. Use of these certainty estimators for vote-weighting allows the system to achieve a higher overall average in classification accuracy than the most accurate base classifier. Weighting with these aggregate measures also results in higher average classification accuracy than weighting with single certainty estimates. Aggregate certainty estimators outperform three baseline strategies, as well as the methods of modified stacking and arbitration, in terms of average accuracy over 36 data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.