Glass fibres slowly degrade due to dissolution when exposed to water. Such environmental aging results in the deterioration of the mechanical properties. In structural offshore and marine applications, as well as in the wind energy sector, R-glass fibre composites are continuously exposed to water and humid environments for decades, with a typical design lifetime being around 25 years or more. During this lifetime, these materials are affected by various temperatures, acidity levels, and mechanical loads. A Dissolving Cylinder Zero-Order Kinetic (DCZOK) model was able to explain the long-term dissolution of R-glass fibres, considering the influence of the pH, temperature, and stress corrosion. The effects of these environmental conditions on the dissolution rate constants and activation energies of dissolution were obtained. Experimentally, dissolution was measured using High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS). For stress corrosion, a custom rig was designed and used. The temperature showed an Arrhenius-type influence on the kinetics, increasing the rate of dissolution exponentially with increasing temperature. In comparison with neutral conditions, basic and acidic aqueous environments showed an increase in the dissolution rates, affecting the lifetime of glass fibres negatively. External loads also increased glass dissolution rates due to stress corrosion. The model was able to capture all of these effects.
This work reports and describes a novel alkali-activated metakaolin as a potential binder material for the granulation of zeolites, which are widely used as CO2 adsorbents. The alkali-activated binders are zeolite-like materials, resulting in good material compatibility with zeolite-based adsorbents. A major problem during the granulation of zeolites is that their adsorption capacities decrease by about 15–20%, because typical binder materials (for example bentonite or kaolin clay) are inactive towards CO2 adsorption. A possible pathway to solve this problem is to introduce a novel binder that is also able to sorb CO2. In such a case, a binder plays a dual role, acting both as a binding material and as a sorbent. However, it is important that, alongside the adsorptive properties, a novel binder material must fulfil mechanical and morphological requirements. Thus, in this work, physical and mechanical properties of this novel binder for zeolite granulation for CO2 adsorption are studied. Alkali-activated metakaolin was found to be efficient and competitive as a binder material, when mechanical and physical properties were concerned. The compressive strengths of most of the obtained binders reported in this work are above the compressive strength threshold of 10 MPa. The future work on this novel binder will be conducted, which includes granulation-related details and the CO2 adsorptive properties of the novel binder material. Metakaolin was used as a precursor for alkali-activated binders. Binders were synthesized using varying molarity of a NaOH solution and at varying curing conditions. The final products were characterized using density measurements, compressive strength tests, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) analysis, and scanning electron microscopy (SEM).
Highlights Review on magnetic field influence on industrial mammalian cells for biopharmaceutical production. Characteristics of magnetic field in the context of bioreactors. Different effects of magnetic field exposure on industrial mammalian cell lines.
A major problem in the modern world is the overuse of fossil resources. The use of such resources and of that amount contribute negatively to the environment we live in. Fossil resources should be replaced with renewable ones. That way, less impact would be done to the environment. Renewable resources would greatly contribute to a healthy sustainable future. Latvia currently ranks seventh on the number of biogas plants per 1 million per capita (27) and is searching for new ways and opportunities to switch from the production of electricity to biomethane. Thus, in this study, a mathematical approach for the calculations of biomethane potentials and emissions of different feedstocks under the anaerobic digestion principle was studied. Databases were searched for the factual numbers of livestock animals, as well as processed sludge, and average food waste. RED II and JEC Well-To-Wheels report v5 were analyzed for data on emission factors and future obligations. Out of combined biomethane potentials of different feedstocks, livestock manure’s potential share was 91%, of which 61% is dairy cow manure. The overall biomethane potential in Latvia is 2.21 to 4.28 PJ. Replacing fossil fuels with biomethane in the transport sector could lower the overall CO2-eq emissions by 12.47–23.86% or 0.4–0.8 million tonnes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.