Nicotine obtained from tobacco can improve learning and memory on various tasks and has been linked to arousal, attention, rapid information processing, working memory, and long-term memories that can cause craving years after someone has stopped smoking. One likely target for these effects is the hippocampus, a centre for learning and memory that has rich cholinergic innervation and dense nicotinic acetylcholine receptor (nAChR) expression. During Alzheimer's dementia there are fewer nAChRs and the cholinergic inputs to the hippocampus degenerate. However, there is no evidence for fast synaptic transmission mediated by nAChRs in the hippocampus, and their role is not understood. Nicotine is known to act on presynaptic nAChRs within the habenula of chick to enhance glutamatergic transmission; here we report that a similar mechanism operates in the hippocampus. Measurements of intracellular Ca2+ in single mossy-fibre presynaptic terminals indicate that nAChRs containing the alpha7 subunit can mediate a Ca2+ influx that is sufficient to induce vesicular neurotransmitter release. We propose that nicotine from tobacco influences cognition by enhancing synaptic transmission. Conversely, a decreased efficacy of transmission may account for the deficits associated with the loss of cholinergic innervation during Alzheimer's disease.
Synaptic modulation and long-term synaptic changes are thought to be the cellular correlates for learning and memory (Madison et al., 1991; Aiba et al., 1994, Goda and Stevens, 1996). The hippocampus is a center for learning and memory that receives abundant cholinergic innervation and has a high density of nicotinic acetylcholine receptors (nAChRs) (Wada et al., 1989; Woolf, 1991). We report that stro ng, brief stimulation of nAChRs enhanced hippocampal glutamatergic synaptic transmission on two independent time scales and altered the relationship between consecutively evoked synaptic currents. The nicotinic synaptic enhancement required extracellular calcium and was produced by the activation of presynaptic alpha7-containing nAChRs. Although one form of glutamatergic enhancement lasted only for seconds, another form lasted for minutes after the nicotinic stimulation had ceased and the nicotinic agonist had been washed away. The synaptic enhancement lasting minutes suggests that nAChR activity can initiate calcium-dependent mechanisms that are known to induce glutamatergic synaptic plasticity. The results with evoked synaptic currents showed that nAChR activity can alter the relationship between the incoming presynaptic activity and outgoing postsynaptic signaling along glutamatergic fibers. Thus, the same information arriving along the same glutamatergic afferents will be processed differently when properly timed nicotinic activity converges onto the glutamatergic presynaptic terminals. Influencing information processing at glutamatergic synapses may be one way in which nicotinic cholinergic activity influences cognitive processes. Disruption of these nicotinic cholinergic mechanisms may contribute to the deficits associated with the degeneration of cholinergic functions during Alzheimer's disease.
A new approach was developed to determine quantitatively the fraction of current carried by Ca2+ through an ion channel under physiological conditions. This approach entails the simultaneous measurement of membrane current and intracellular Ca2+ for single cells. Whole-cell patch-clamp techniques were used to measure current, and intracellular Ca2+ was monitored with the fluorescent indicator fura-2. To obtain a quantitative measure of the fraction of current carried by Ca2+, a cell-by-cell calibration method was devised to account for differences among cells in such factors as cellular volume and Ca2+ buffering. The method was used to evaluate the Ca2+ flux through muscle and neuronal nicotinic ACh receptors (nAChRs). In a solution containing 2.5 mM Ca2+ at a holding potential of -50 mV, Ca2+ carries 2.0% of the inward current through muscle nAChRs from BC3H1 cells and 4.1% of the inward current through neuronal nAChRs from adrenal chromaffin cells. The Ca2+ flux through neuronal nAChRs of adrenal chromaffin cells is insensitive to alpha-bungarotoxin. The influx of Ca2+ is voltage dependent, and because of the Ca2+ concentration difference across the cellular membrane, there is Ca2+ influx into the cell even when there is a large net outward current. At both muscle and neuronal cholinergic synapses, activity-dependent Ca2+ influx through nicotinic receptors produces intracellular signals that may have important roles in synaptic development, maintenance, and plasticity.
Although the hippocampus expresses nicotinic acetylcholine receptors (nAChRs) and receives cholinergic innervation, the functional roles of these receptors are not completely understood. Our results indicated that presynaptic nAChRs mediated a calcium influx that enhanced the release of both glutamate and GABA. Fura-2 detection of calcium in single mossy fiber presynaptic terminals indicated that nAChRs directly mediated a calcium influx. In hippocampal neurons in primary culture, both spontaneous vesicular release and evoked release of glutamate and GABA were enhanced by nicotine. The nicotinic current displayed rapid desensitization kinetics, and the response to nicotine was inhibited by alpha-bungarotoxin and methyllcaconitine, suggesting that nAChRs containing the alpha 7 subunit mediated the effect. Modulation of synaptic activity by presynaptic calcium influx may represent a physiological role of acetylcholine in the brain, as well as a mechanism of action of nicotine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.