Antibiotic resistant bacterial infections are a growing problem in patient care. These infections are difficult to treat and severely affect the patient's quality of life. The goal of this translational experiment was to investigate the antimicrobial potential of cationic steroidal antimicrobial-13 (CSA-13) for the prevention of perioperative device-related infections in vivo. It was hypothesized that when incorporated into a polymeric device coating, the release of CSA-13 could prevent perioperative device-related infection without inhibiting skeletal attachment. To test this hypothesis, 12 skeletally mature sheep received a porous coated titanium implant in the right femoral condyle. Group 1 received the titanium implant and an inoculum of 5 × 10(8) CFU of methicillin-resistant Staphylococcus aureus (MRSA). Group 2 received a CSA-13 coated implant and the MRSA inoculum. Group 3 received only the CSA-13 coated implant and Group 4 received only the implant-without the CSA-13 coating or MRSA inoculum. In conclusion, the CSA-13 combination coating demonstrated bactericidal potential without adversely affecting skeletal attachment. The CSA-13 containing groups exhibited no evidence of bacterial infection at the conclusion of the 12 week study and established skeletal attachment consistent with Group 4. In contrast, all of the Group 1 animals became infected and required euthanasia within 6-10 days. The significance of this finding is that this combination coating could be applied to implanted devices to prevent perioperative device-related infections. This method may facilitate significantly reduced incidences of device-related infections as well as a new method to treat and prevent resistant strain bacterial infections.
More than 400,000 primary hip and knee replacement surgeries are performed each year in the United States. From these procedures, approximately 0.5–3% will become infected and when considering revision surgeries, this rate has been found to increase significantly. Antibiotic resistant bacterial infections are a growing problem in patient care. This in vitro research investigated the antimicrobial potential of the polymer released, broad spectrum, Cationic Steroidal Antimicrobial-13 (CSA-13) for challenges against 5 × 108 colony forming units (CFU) of methicillin-resistant Staphylococcus aureus (MRSA). It was hypothesized that a weight-to-weight (w/w) concentration of 18% CSA-13 in silicone would exhibit potent bactericidal potential when used as a controlled release device coating. When incorporated into a polymeric device coating, the 18% (w/w) broad-spectrum polymer released CSA-13 antimicrobial eliminated 5 × 108 CFU of MRSA within 8 hours. In the future, these results will be utilized to develop a sheep model to assess CSA-13 for the prevention of perioperative device related infections in vivo.
Infection remains a significant problem associated with biomedical implants and orthopedic surgeries, especially in revision total joint replacements. Recent advances in antibiotic-releasing bone void fillers (BVF) provide new opportunities to address these types of device-related orthopedic infections that often lead to substantial economic burdens and reduced quality of life. We report improvements made in fabrication and scalability of an antibiotic-releasing polycaprolactone-calcium carbonate/phosphate ceramic composite BVF using a new solvent-free, molten-cast fabrication process. This strategy provides the ability to tailor drug release kinetics from the BVF composite based on modifications of the inorganic substrate and/or the polymeric component, allowing extended tobramycin release at bactericidal concentrations. The mechanical properties of the new BVF composite are comparable to many reported BVFs and validate the relative homogeneity of fabrication. Most importantly, fabrication quality controls are correlated with favorable drug release kinetics, providing bactericidal activity to 10 weeks in vitro when the polycaprolactone component exceeds 98% w/w of the total polymer fraction. Furthermore, in a time kill study, tobramycin-releasing composite fragments inhibited S. aureus growth over 48 h at inoculums as high as 10(9) CFU/mL. This customizable antibiotic-releasing BVF polymer-inorganic biomaterial should provide osseointegrative and osteoconductive properties while contributing antimicrobial protection to orthopedic sites requiring the use of bone void fillers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.