The study of protein transport in living cell requires automated techniques to capture and quantify dynamics of the protein packaged into secretory vesicles. The movement of the vesicles is not consistent along the trajectory, therefore the quantitative study of their dynamics requires trajectories segmentation. This paper explores quantification of such vesicle dynamics and introduces a novel 1D U-Net based trajectory segmentation. Unlike existing mean squared displacement based methods, our proposed framework is not restricted under the requirement of long trajectories for effective segmentation. Moreover, as our approach provides segmentation within each sliding window, it enables effectively capture even short segments. The approach is quantified by the data acquired from spinning disk microscopy imaging of protein trafficking in Drosophila epithelial cells. The extracted trajectories have lengths ranging from 5 (short tracks) to 135 (long tracks) points. The proposed approach achieves 77.7% accuracy for the trajectory segmentation.
Accurate analysis of vesicle trafficking in live cells is challenging for a number of reasons: varying appearance, complex protein movement patterns, and imaging conditions. To allow fast image acquisition, we study how employing an astigmatism can be utilized for obtaining additional information that could make tracking more robust. We present two approaches for measuring the z position of individual vesicles. Firstly, Gaussian curve fitting with CNN-based denoising is applied to infer the absolute depth around the focal plane of each localized protein. We demonstrate that adding denoising yields more accurate estimation of depth while preserving the overall structure of the localized proteins. Secondly, we investigate if we can predict using a custom CNN architecture the axial trajectory trend. We demonstrate that this method performs well on calibration beads data without the need for denoising. By incorporating the obtained depth information into a trajectory analysis, we demonstrate the potential of improving vesicle tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.