Background Guidelines recommend considering workload in interpretation of the systolic blood pressure (SBP) response to exercise, but reference values are lacking. Design This was a retrospective, consecutive cohort study. Methods From 12,976 subjects aged 18–85 years who performed a bicycle ergometer exercise test at one centre in Sweden during the years 2005–2016, we excluded those with prevalent cardiovascular disease, comorbidities, cardiac risk factors or medications. We extracted SBP, heart rate and workload (watt) from ≥ 3 time points from each test. The SBP/watt-slope and the SBP/watt-ratio at peak exercise were calculated. Age- and sex-specific mean values, standard deviations and 90th and 95th percentiles were determined. Reference equations for workload-indexed and peak SBP were derived using multiple linear regression analysis, including sex, age, workload, SBP at rest and anthropometric variables as predictors. Results A final sample of 3839 healthy subjects ( n = 1620 female) were included. While females had lower mean peak SBP than males (188 ± 24 vs 202 ± 22 mmHg, p < 0.001), workload-indexed SBP measures were markedly higher in females; SBP/watt-slope: 0.52 ± 0.21 versus 0.41 ± 0.15 mmHg/watt ( p < 0.001); peak SBP/watt-ratio: 1.35 ± 0.34 versus 0.90 ± 0.21 mmHg/watt ( p < 0.001). Age, sex, exercise capacity, resting SBP and height were significant predictors of the workload-indexed SBP parameters and were included in the reference equations. Conclusions These novel reference values can aid clinicians and exercise physiologists in interpreting the SBP response to exercise and may provide a basis for future research on the prognostic impact of exercise SBP. In females, a markedly higher SBP in relation to workload could imply a greater peripheral vascular resistance during exercise than in males.
Aims The association between peak systolic blood pressure (SBP) during exercise testing and outcome remains controversial, possibly due to the confounding effect of external workload (metabolic equivalents of task (METs)) on peak SBP as well as on survival. Indexing the increase in SBP to the increase in workload (SBP/MET-slope) could provide a more clinically relevant measure of the SBP response to exercise. We aimed to characterize the SBP/MET-slope in a large cohort referred for clinical exercise testing and to determine its relation to all-cause mortality. Methods and results Survival status for male Veterans who underwent a maximal treadmill exercise test between the years 1987 and 2007 were retrieved in 2018. We defined a subgroup of non-smoking 10-year survivors with fewer risk factors as a lower-risk reference group. Survival analyses for all-cause mortality were performed using Kaplan–Meier curves and Cox proportional hazard ratios (HRs (95% confidence interval)) adjusted for baseline age, test year, cardiovascular risk factors, medications and comorbidities. A total of 7542 subjects were followed over 18.4 (interquartile range 16.3) years. In lower-risk subjects ( n = 709), the median (95th percentile) of the SBP/MET-slope was 4.9 (10.0) mmHg/MET. Lower peak SBP (<210 mmHg) and higher SBP/MET-slope (>10 mmHg/MET) were both associated with 20% higher mortality (adjusted HRs 1.20 (1.08–1.32) and 1.20 (1.10–1.31), respectively). In subjects with high fitness, a SBP/MET-slope > 6.2 mmHg/MET was associated with a 27% higher risk of mortality (adjusted HR 1.27 (1.12–1.45)). Conclusion In contrast to peak SBP, having a higher SBP/MET-slope was associated with increased risk of mortality. This simple, novel metric can be considered in clinical exercise testing reports.
There are relatively few studies on female athletes examining cardiac size and function and how these measures relate to maximal oxygen uptake (VO2max). When determining sports eligibility, it is important to know what physiological adaptations and characteristics may be expected in female athletes, taking body and cardiac size into account. The purposes of this study were (a) to compare right and left heart dimensions and function in female endurance athletes (ATH) and in non-athletic female controls of similar age (CON); and (b) to explore how these measures related to VO2max. Forty-six ATH and 48 CON underwent a maximal bicycle exercise test and an echocardiographic examination at rest, including standard and color tissue Doppler investigation. All heart dimensions indexed for body size were larger in ATH (all P < 0.01). The diastolic mitral E/A ratio was 27% higher in ATH (P < 0.001) while systolic left and right atrioventricular longitudinal displacement was 7% (P = 0.002) and 15% (P < 0.001) larger in ATH, respectively. Half (50.3%) of the variability in VO2max could be explained by left ventricular end-diastolic volume. Our results could be useful in evaluating female endurance athletes with suspected cardiac disease and contribute to understanding differences between female athletes and non-athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.