Although bacteriophage φX174 is easy to propagate and genetically tractable, it is use as a peptide display platform has not been explored. One region within the φX174 major spike protein G tolerated 13 of 16 assayed insertions, ranging from 10 to 75 amino acids. The recombinant proteins were functional and incorporated into infectious virions. In the folded protein, the peptides would be icosahedrally displayed within loops that extend from the protein’s β-barrel core. The well-honed genetics of φX174 allowed permissive insertions to be quickly identified by the cellular phenotypes associated with cloned gene expression. The cloned genes were easily transferred from plasmids to phage genomes via recombination rescue. Direct ELISA validated several recombinant virions for epitope display. Some insertions conferred a temperature-sensitive (ts) protein folding defect, which was suppressed by global suppressors in protein G, located too far away from the insertion to directly alter peptide display.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.