AimsLeft ventricular (LV) pressure–strain loop area reflects regional myocardial work and metabolic demand, but the clinical use of this index is limited by the need for invasive pressure. In this study, we introduce a non-invasive method to measure LV pressure–strain loop area.Methods and resultsLeft ventricular pressure was estimated by utilizing the profile of an empiric, normalized reference curve which was adjusted according to the duration of LV isovolumic and ejection phases, as defined by timing of aortic and mitral valve events by echocardiography. Absolute LV systolic pressure was set equal to arterial pressure measured invasively in dogs (n = 12) and non-invasively in patients (n = 18). In six patients, myocardial glucose metabolism was measured by positron emission tomography (PET). First, we studied anaesthetized dogs and observed an excellent correlation (r = 0.96) and a good agreement between estimated LV pressure–strain loop area and loop area by LV micromanometer and sonomicrometry. Secondly, we validated the method in patients with various cardiac disorders, including LV dyssynchrony, and confirmed an excellent correlation (r = 0.99) and a good agreement between pressure–strain loop areas using non-invasive and invasive LV pressure. Non-invasive pressure–strain loop area reflected work when incorporating changes in local LV geometry (r = 0.97) and showed a strong correlation with regional myocardial glucose metabolism by PET (r = 0.81).ConclusionsThe novel non-invasive method for regional LV pressure–strain loop area corresponded well with invasive measurements and with directly measured myocardial work and it reflected myocardial metabolism. This method for assessment of regional work may be of clinical interest for several patients groups, including LV dyssynchrony and ischaemia.
Left ventricular (LV) dyssynchrony reduces myocardial efficiency because work performed by one segment is wasted by stretching other segments. In the present study, we introduce a novel noninvasive clinical method that quantifies wasted energy as the ratio between work consumed during segmental lengthening (wasted work) divided by work during segmental shortening. The wasted work ratio (WWR) principle was studied in 6 anesthetized dogs with left bundle branch block (LBBB) and in 28 patients with cardiomyopathy, including 12 patients with LBBB and 10 patients with cardiac resynchronization therapy. Twenty healthy individuals served as controls. Myocardial strain was measured by speckle tracking echocardiography, and LV pressure (LVP) was measured by micromanometer and a previously validated noninvasive method. Segmental work was calculated by multiplying strain rate and LVP to get instantaneous power, which was integrated to give work as a function of time. A global WWR was also calculated. In dogs, WWR by estimated LVP and strain showed a strong correlation (r = 0.94) and good agreement with WWR by the LV micromanometer and myocardial segment length by sonomicrometry. In patients, noninvasive WWR showed a strong correlation (r = 0.96) and good agreement with WWR using the LV micromanometer. Global WWR was 0.09 ± 0.03 in healthy control subjects, 0.36 ± 0.16 in patients with LBBB, and 0.21 ± 0.09 in cardiomyopathy patients without LBBB. Cardiac resynchronization therapy reduced global WWR from 0.36 ± 0.16 to 0.17 ± 0.07 (P < 0.001). In conclusion, energy loss due to incoordinated contractions can be quantified noninvasively as the LV WWR. This method may be applied to evaluate the mechanical impact of dyssynchrony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.