Current management of hemophilia B entails multiple weekly infusions of factor IX (FIX) to prevent bleeding episodes. In an attempt to make a longer acting recombinant FIX (rFIX), we have explored a new releasable protraction concept using the native N-glycans in the activation peptide as sites for attachment of polyethylene glycol (PEG). Release of the activation peptide by physiologic activators converted glycoPEGylated rFIX (N9-GP) to native rFIXa and proceeded with normal kinetics for FXIa, while the K m for activation by FVIIa-tissue factor (TF) was increased by 2-fold. Consistent with minimal perturbation of rFIX by the attached PEG, N9-GP retained 73%-100% specific activity in plasma and whole-blood-based assays and showed efficacy comparable with rFIX in stopping acute bleeds in hemophilia B mice. In animal models N9-GP exhibited up to 2-fold increased in vivo recovery and a markedly prolonged half-life in mini-pig (76 hours) and hemo- IntroductionFactor IX (FIX) is a vitamin K-dependent glycoprotein and an essential protease of the hemostatic system. The domain organization of FIX is shared with factors VII, X, and protein C and comprises an N-terminal domain rich in ␥-carboxyglutamic acid (Gla), 2 epidermal growth factor-like repeats and a C-terminal trypsin-like protease domain. 1 Together they form a 55-kDa single-chain protease precursor circulating in plasma at a concentration of approximately 90nM (5 g/mL), defined as 1 IU/mL. FIX is converted to the 2-chain activated form by the tissue factor (TF)-factor VIIa (FVIIa) complex or factor XIa (FXIa). Activation occurs by limited proteolysis at Arg145 and Arg180 in the protease domain and liberates a 35-amino acid activation peptide that carries the only 2 N-linked glycans in the protein. 2,3 Subsequent assembly of FIXa with the cofactor VIIIa on the activated platelet surface greatly enhances the proteolytic activity of FIXa toward its substrate factor X (FX) and is essential for propagation of the coagulation response. 4 The importance of this activity is reflected by the occurrence of the bleeding disorder hemophilia B (HB) in individuals carrying mutations in the FIX gene. The prevalence of HB is approximately 1 in 25 000 males, and it has been estimated that approximately 84 000 people are affected worldwide. 5 The mainstay in HB treatment is substitution therapy by infusion of plasma-derived or recombinant FIX (rFIX). The therapeutic goal is to prevent bleeding episodes and to provide safe and efficacious treatment of bleedings when they occur. Because of the relatively short half-life of FIX (18-24 hours [6][7][8] ), the recommended prophylaxis regimen consists of 2 to 3 weekly infusions of 40-100 IU/kg 9 FIX to maintain trough levels above 1% and thus shifting patients from a severe to a milder phenotype. When adhered to, prophylaxis in patients without severe joint disorder is efficacious with a frequency of only 0-2 breakthrough bleeds per year in the majority of patients. 8,10 However, the need for multiple weekly infusions present challen...
Key Points• GlycoPEGylated demonstrates the same efficacy and prolonged effect in animal models as native FVIII.• Circulatory half-life of glycoPEGylated FVIII (N8-GP) is prolonged by approximately twofold in several species.Frequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain. Binding to von Willebrand factor (VWF) was maintained for all conjugates. Upon cleavage by thrombin, the B-domain and the associated PEG were released, generating activated FVIII (FVIIIa) with the same primary structure and specific activity as native FVIIIa. In both FVIII-and VWF-deficient mice, the half-life was found to increase with the size of PEG. In vivo potency and efficacy of FVIII conjugated with a 40-kDa PEG (N8-GP) and unmodified FVIII were not different. N8-GP had a longer duration of effect in FVIII-deficient mouse models, approximately a twofold prolonged half-life in mice, rabbits, and cynomolgus monkeys; however, the prolongation was less pronounced in rats. Binding capacity of N8-GP on human monocyte-derived dendritic cells was reduced compared with unmodified FVIII, resulting in several-fold reduced cellular uptake. In conclusion, N8-GP has the potential to offer efficacious prevention and treatment of bleeds in hemophilia A at reduced dosing frequency. (Blood. 2013;121(11):2108-2116
Summary. The aim of this study was to evaluate the in vitro function of the new recombinant factor VIII (FVIII) compound, N8. The specific activity of N8 as measured in a FVIII:C one‐stage clot assay was 9300 ± 400 IU mg−1 based on the analysis of seven individual batches. The ratio between the FVIII:C activity measured in clot and chromogenic assays was 1.00 (95% confidence interval 0.97–1.03). N8 bound to von Willebrand factor with Kd values of 0.2 nm when measured by ELISA and by surface plasmon resonance. FVIIIa cofactor activity was determined from the kinetic parameters of factor IXa‐catalysed factor X (FX) activation. The rate of activation of N8 by thrombin as well as Km and kcat for FX activation was in the same range as those observed for Advate®. The rate of activated protein C (APC)‐catalysed inactivation was similar for activated N8 and Advate®. N8 improved thrombin generation in a dose‐dependent manner and induced similar rates of thrombin generation as Advate® and the plasma‐derived FVIII product Haemate®. Using thromboelastography (TEG®), N8 was shown to improve the clot formation and clot stability in whole blood from haemophilia A patients. Comparable potency and efficacy of N8 and Advate® was found based on TEG® parameters. Finally, similar binding profiles to immobilized lipoprotein receptor‐related protein (LRP) of N8 and Advate® were observed. The study demonstrated that N8 is fully functional in a variety of assays measuring FVIII activity. No functional differences were found between N8 and comparator compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.