In response to vascular injury, vascular smooth muscle cells (VSMCs) may switch from a contractile to a proliferative phenotype thereby contributing to neointima formation. Previous studies showed that the long noncoding RNA (lncRNA) is critical for paraspeckle formation and tumorigenesis by promoting cell proliferation and migration. However, the role of in VSMC phenotypic modulation is unknown. Herein we showed that expression was induced in VSMCs during phenotypic switching in vivo and in vitro. Silencing in VSMCs resulted in enhanced expression of SM-specific genes while attenuating VSMC proliferation and migration. Conversely, overexpression of in VSMCs had opposite effects. These in vitro findings were further supported by in vivo studies in which knockout mice exhibited significantly decreased neointima formation following vascular injury, due to attenuated VSMC proliferation. Mechanistic studies demonstrated that sequesters the key chromatin modifier WDR5 (WD Repeat Domain 5) from SM-specific gene loci, thereby initiating an epigenetic "off" state, resulting in down-regulation of SM-specific gene expression. Taken together, we demonstrated an unexpected role of the lncRNA in regulating phenotypic switching by repressing SM-contractile gene expression through an epigenetic regulatory mechanism. Our data suggest that is a therapeutic target for treating occlusive vascular diseases.
Background: Vascular homeostasis is maintained by the differentiated phenotype of vascular smooth muscle cells (VSMCs). The landscape of protein coding genes comprising the transcriptome of differentiated VSMCs has been intensively investigated but many gaps remain including the emerging roles of non-coding genes. Methods: We re-analyzed large-scale, publicly available bulk and scRNA-seq datasets from multiple tissues and cell types to identify VSMC-enriched lncRNAs. The in vivo expression pattern of a novel SMC expressed lncRNA, Carmn (CARdiac Mesoderm Enhancer-associated Non-coding RNA) was investigated using a novel Carmn GFP knock-in reporter mouse model. Bioinformatics and qRT-PCR analysis were employed to assess CARMN expression changes during VSMC phenotypic modulation in human and murine vascular disease models. In vitro , functional assays were performed by knocking down CARMN with antisense oligonucleotides and over-expressing Carmn by adenovirus in human coronary artery SMCs. Carotid artery injury was performed in SMC-specific Carmn knockout mice to assess neointima formation and the therapeutic potential of reversing CARMN loss was tested in a rat carotid artery balloon injury model. The molecular mechanisms underlying CARMN function were investigated using RNA pull-down, RNA immunoprecipitation and luciferase reporter assays. Results: We identified CARMN , which was initially annotated as the host gene of the MIR143/145 cluster and recently reported to play a role in cardiac differentiation, as a highly abundant and conserved, SMC-specific lncRNA. Analysis of the Carmn GFP knock-in mouse model confirmed that Carmn is transiently expressed in embryonic cardiomyocytes and thereafter becomes restricted to SMCs. We also found that Carmn is transcribed independently of Mir143/145 . CARMN expression is dramatically decreased by vascular disease in humans and murine models and regulates the contractile phenotype of VSMCs in vitro . In vivo , SMC-specific deletion of Carmn significantly exacerbated, while overexpression of Carmn markedly attenuated, injury-induced neointima formation in mouse and rat, respectively. Mechanistically, we found that Carmn physically binds to the key transcriptional cofactor myocardin, facilitating its activity and thereby maintaining the contractile phenotype of VSMCs Conclusions: CARMN is an evolutionarily conserved SMC-specific lncRNA with a previously unappreciated role in maintaining the contractile phenotype of VSMCs and is the first non-coding RNA discovered to interact with myocardin.
BackgroundEmotionally traumatic experiences can lead to debilitating anxiety disorders, such as phobias and Post-Traumatic Stress Disorder (PTSD). Exposure to such experiences, however, is not sufficient to induce pathology, as only up to one quarter of people exposed to such events develop PTSD. These statistics, combined with findings that smaller hippocampal size prior to the trauma is associated with higher risk of developing PTSD, suggest that there are pre-disposing factors for such pathology. Because prospective studies in humans are limited and costly, investigating such pre-dispositions, and thus advancing understanding of the genesis of such pathologies, requires the use of animal models where predispositions are identified before the emotional trauma. Most existing animal models are retrospective: they classify subjects as those with or without a PTSD-like phenotype long after experiencing a traumatic event. Attempts to create prospective animal models have been largely unsuccessful.Methodology/Principal FindingsHere we report that individual predispositions to a PTSD-like phenotype, consisting of impaired rate and magnitude of extinction of an emotionally traumatic event coupled with long-lasting elevation of acoustic startle responses, can be revealed following exposure to a mild stressor, but before experiencing emotional trauma. We compare, in rats, the utility of several classification criteria and report that a combination of criteria based on acoustic startle responses and behavior in an anxiogenic environment is a reliable predictor of a PTSD-like phenotype.Conclusions/SignificanceThere are individual predispositions to developing impaired extinction and elevated acoustic startle that can be identified after exposure to a mildly stressful event, which by itself does not induce such a behavioral phenotype. The model presented here is a valuable tool for studying the etiology and pathophysiology of anxiety disorders and provides a platform for testing behavioral and pharmacological interventions that can reduce the probability of developing pathologic behaviors associated with such disorders.
Calcyon regulates activity dependent internalization of AMPA glutamate receptors and long term depression of excitatory synapses. Elevated levels of calcyon are consistently observed in brains from schizophrenic patients, and the calcyon gene is associated with attention deficit hyperactivity disorder. Executive function deficits are common to both disorders, and at least for schizophrenia, the etiology appears to involve both heritable and neurodevelopmental factors. Here, we show with calcyon overexpressing CalOE transgenic mice that lifelong calcyon upregulation impairs executive functions including response inhibition and working memory, without producing learning and memory deficits in general. As response inhibition and working memory, as well as the underlying neural circuitry continue to mature into early adulthood, we functionally silenced the transgene during postnatal days 28–49, a period corresponding to adolescence. Remarkably, the response inhibition and working memory deficits including perseverative behavior were absent in adult CalOE mice with the transgene silenced in adolescence. Suppressing the calcyon transgene in adulthood only partially rescued the deficits, suggesting calcyon upregulation in adolescence irreversibly alters development of neural circuits supporting mature response inhibition and working memory. Brain regional immunoblots revealed a prominent down-regulation of AMPA GluR1 subunits in hippocampus, and GluR2/3 subunits in hippocampus and prefrontal cortex of the CalOE mice. Silencing the transgene in adolescence prevented the decrease in hippocampal GluR1, further implicating altered frontohippocampal connectivity in the executive function deficits observed in the CalOE mice. Treatments that mitigate the effects of high levels of calcyon during adolescence could preempt adult deficits in executive functions in individuals at-risk for serious mental illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.