Highlights d scRNA-seq analyses highlight conserved myeloid subsets in human and murine CRC d Two distinct TAM subsets show inflammatory and angiogenic signatures, respectively d Two distinct TAM subsets show differential sensitivity to CSF1R blockade d Anti-CD40 activates specific cDC1s and expands Th1-like and CD8 + memory T cells
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability.
RUVBL1
and RUVBL2 are ATPases associated with diverse cellular
activities (AAAs) that form a complex involved in a variety of cellular
processes, including chromatin remodeling and regulation of gene expression.
RUVBLs have a strong link to oncogenesis, where overexpression is
correlated with tumor growth and poor prognosis in several cancer
types. CB-6644, an allosteric small-molecule inhibitor of the ATPase
activity of the RUVBL1/2 complex, interacts specifically with RUVBL1/2
in cancer cells, leading to cell death. Importantly, drug-acquired-resistant
cell clones have amino acid mutations in either RUVBL1 or RUVBL2,
suggesting that cell killing is an on-target consequence of RUVBL1/2
engagement. In xenograft models of acute myeloid leukemia and multiple
myeloma, CB-6644 significantly reduced tumor growth without obvious
toxicity. This work demonstrates the therapeutic potential of targeting
RUVBLs in the treatment of cancer and establishes a chemical entity
for probing the many facets of RUVBL biology.
Single-cell RNA sequencing is a powerful tool to examine cellular heterogeneity, novel markers and target genes, and therapeutic mechanisms in human cancers and animal models. Here, we analyzed single-cell RNA sequencing data of T cells obtained from multiple mouse tumor models by PCA-based subclustering coupled with TCR tracking using the STARTRAC algorithm. This approach revealed various differentiated T cell subsets and activation states, and a correspondence of T cell subsets between human and mouse tumors. STARTRAC analyses demonstrated peripheral T cell subsets that were developmentally connected with tumor-infiltrating CD8+ cells, CD4+ Th1 cells, and T reg cells. In addition, large amounts of paired TCRα/β sequences enabled us to identify a specific enrichment of paired public TCR clones in tumor. Finally, we identified CCR8 as a tumor-associated T reg cell marker that could preferentially deplete tumor-associated T reg cells. We showed that CCR8-depleting antibody treatment provided therapeutic benefit in CT26 tumors and synergized with anti–PD-1 treatment in MC38 and B16F10 tumor models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.