The crystallization of amorphous drugs during dissolution is a type of solution mediated phase transformation that can reduce the bioavailability enhancement one hoped to gain from the amorphous state. The goal of this study was to explore the effects of processing on the dissolution performance of amorphous indomethacin. The amorphous solids were prepared by four techniques, quench cooling the melted solid, cryogrinding γ indomethacin amorphous for 1 or 3 h and quench cooling the solid followed by 1 h of cryogrinding. Dissolution results assessed in a flow-through intrinsic dissolution apparatus reveal decreases in the dissolution rate of amorphous indomethacin during the experimental time frame indicating that a solution mediated phase transformation has occurred. The amorphous solids prepared by melt quenching and melt quenching followed by cryogrinding showed a significant dissolution rate advantage over the γ form of indomethacin. In contrast, indomethacin that was cryoground amorphous for 1 or 3 h did not show any dissolution rate advantage over the crystalline material. Transformation was confirmed by in situ Raman microscopy and polarized light microscopy with differences seen in the nature of the crystals apparent on the surface of the dissolving solid. A portion of the melt quenched amorphous sample was annealed at 25 °C and 0% relative humidity to induce partial crystallization of γ indomethacin. As crystallinity increased, the dissolution rate decreased. The transformation time of partially amorphous indomethacin was not dependent on the level of crystallinity present, indicating only a small fraction of crystalline material needs to be present to affect the kinetics of crystallization. The solution mediated phase transformation of amorphous indomethacin is affected by the processing method even though all solids were confirmed amorphous by polarized light microscopy and X-ray diffraction. Dissolution may distinguish differences in amorphous solids that other methods cannot discern.
A flow-through dissolution apparatus was designed and evaluated to screen small quantities of pharmaceutical drug compounds early in development. The apparatus was designed to mount on a microscope slide such that a compacted solid drug was positioned flush along one wall and the fluid flow in the apparatus was laminar flow in a rectangular duct. Stereomicroscopic digital images and Raman spectra of the solid were taken during dissolution and the effluent dissolution medium was collected in fractions to determine the dissolution rate by fluorescence or HPLC/UV. Three compounds, triamterene, ketoprofen, and β-naphthoic acid were investigated in the dissolution flow cell at various hydrodynamic conditions. In conditions where no solvent-mediated conversion was expected, there was a decrease in dissolution rate with time in the flow through cell that was associated with surface smoothing. This phenomenon also occurred in rotating disk experiments. In either case, the magnitude and time course of the decrease in dissolution rate with time is generally different enough to distinguish from the decrease in dissolution rate due to solvent-mediated conversion.
A new type of freeze-drying microscope based upon time-domain optical coherence tomography is presented here (OCT-FDM). The microscope allows for real-time, in situ 3D imaging of pharmaceutical formulations in vials relevant for manufacturing processes with a lateral resolution of <7 μm and an axial resolution of <5 μm. Correlation of volumetric structural imaging with product temperature measured during the freeze-drying cycle allowed investigation of structural changes in the product and determination of the temperature at which the freeze-dried cake collapses. This critical temperature is the most important parameter in designing freeze-drying processes of pharmaceutical products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.