In the production of cement and concrete, mechanical and durable properties are essential, along with reasonable cost and sustainability. This study aimed to apply an evaluation procedure of the level of sustainability of mixtures of high-performance concretes (HPC) with various eco-friendly supplementary cementitious materials (SCM). The major supplementary cementitious materials (SCMs), namely, volcanic pumice pozzolan (VPP), Class C and F fly ash, ground granulated blast furnace slag of grade 120, silica fume, and metakaolin, were included. Twenty-seven concrete mixtures were analyzed using a previously presented comprehensive material sustainability indicator in a cost-effective variant. The results indicated that the rank of the concretes differed at 28, 56, and 91 days after concreting. In addition, the study showed no correlation of strength and diffusion parameters with sustainability indicators. Finally, this study will contribute to the optimal selection of mixtures of HPC with VPP in terms of sustainability, cost, and durability for future implementation in reinforced concrete bridge deck slabs and pavements. The values of sustainability indicators for pumice-based mixtures were compared with those for other SCMs, highlighting the sustainable performance of volcanic ash-based SCM.
Since concrete is one of the most important and useful materials in the construction sector, which, unfortunately, has an adverse impact on the environment, it is evident that correct procedures for designing and/or assessing concrete structures need to be created. Model Code 2020 with the focus to sustainability stated to be one of main aspiration goals, which will have implications for subsidiary performance requirements critical to structural design, integrate life cycle perspective, reliability and performance based concepts and end-of-service-life issues. Evidently the combined impact of the service life and relevant safety level of structures on the economical and environmental aspects desire full consideration of engineers and stakeholders. Consideration is also given to energy and raw material costs, as well as to environmental impact throughout the life cycle – e.g. due to emissions.
Probabilistic procedures considering the durability with respect to corrosion of reinforcement caused by aggressive substances are widely applied; however, they are based on narrow assumptions. The aspects need to be evaluated both in terms of the search for suitable application of the various experimental results and in terms of their impact on the result of the stochastic assessment itself. In this article, sensitivity analysis was used as an ideal tool to prove how input parameters affect the results of the evaluation, with consideration of different types of concrete (ordinary or self-compacting with and without fibres). These concretes may be used in aggressive environments, as an industrial floor or as a part of the load-bearing bridge structure. An example of a reinforced concrete bridge deck was selected as the solved structure. The results show that in the case of a classic evaluation, a larger amount of fibre reports a lower resistance of concrete, which contradicts the assumptions. The sensitivity analysis then shows that self-compacting concrete is more sensitive to the values of the diffusion coefficient, and with the consideration of fibres, the effect is even greater.
Reinforced concrete structures are typically exposed to a combination of aggressive substances and mechanical stresses, which contribute to fast degradation. The present research was conducted to evaluate five time-dependent parameters from several different tests, namely compressive strength, static modulus, dynamic modulus, surface, and bulk electrical resistance. Some parameters were obtained using destructive testing (DT) and some using non-destructive testing (NDT). Due to the correlation and calculation of regression curves, it was possible to compare the correlation of parameters important for estimating the durability of reinforced concrete structures in relation to degradation and corrosion. Concrete of C40/50 grade was examined in several time periods, and the parameter relationships were analysed. At the same time, a statistical evaluation was carried out, and therefore the study contains the average values and standard deviations of all measured parameters. The results show that the compressive strength and the electrical resistivity of the surface and bulk have a high correlation. In contrast, the dynamic modulus and electrical resistivity have low linear correlation, but it was possible to apply a quadratic curve with a high degree of fit. For the comparison of static elastic modulus and electrical resistance, the quality of the quadratic regression model was low but sufficient. The results show that, for structural concrete, the presented NDT methods can be used to estimate other parameters obtained from the DT methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.