Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Steak tartare is a raw, ready-to-eat meal popular in European countries, the safety of which is often discussed due to the risk of foodborne illness. The aim of this study was to determine the prevalence of Listeria monocytogenes in vacuum-packed steak tartare from retailers in the Czech Republic, characterize the strains obtained by typing methods and to evaluate the efficacy of ListexTM P100 against L. monocytogenes artificially inoculated into steak tartare samples. The prevalence of L. monocytogenes was 55% and 17 isolates belonging mostly to serotype 1/2a were obtained. Altogether 11 sequence types and 11 clonal complexes were assigned based on the whole genome sequencing (WGS) signifying the high diversity of L. monocytogenes isolates obtained. Core genome multi-locus sequence typing (cgMLST) did not confirm an epidemiological connection with human cases of listeriosis. The efficacy of ListexTM P100 treatment at concentrations of 108 and 109 PFU/g on artificially inoculated beef steak tartare samples was not efficient. Based on the results of this study, steak tartare from retailers can be considered as a source of L. monocytogenes that remains a challenge to the food industry.
The natural environment and water are among the sources of Campylobacter jejuni and Campylobacter coli. A limited number of protocols exist for the isolation of campylobacters in poorly filterable water. Therefore, the goal of our work was to find a more efficient method of Campylobacter isolation and detection from wastewater and surface water than the ISO standard. In the novel rapid culture method presented here, samples are centrifuged at high speed, and the resuspended pellet is inoculated on a filter, which is placed on Campylobacter selective mCCDA agar. The motile bacteria pass through the filter pores, and mCCDA agar suppresses the growth of background microbiota on behalf of campylobacters. This culture-based method is more efficient for the detection and isolation of Campylobacter jejuni and Campylobacter coli from poorly filterable water than the ISO 17995 standard. It also is less time-consuming, taking only 72 h and comprising three steps, while the ISO standard method requires five or six steps and 144–192 h. This novel culture method, based on high-speed centrifugation, bacterial motility, and selective cultivation conditions, can be used for the detection and isolation of various bacteria from water samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.