Soil structure is a crucial constituent influencing soil organic richness, rooting systems, and soil moisture conservation. Adding biochar to the soil, which directly affects aggregation, can significantly alter the soil moisture status. The extent of this impact is influenced by the temperature at which pyrolysis biochar is formed. The impact of biochar derived from wheat straw made at 350, 450, 550, and 650 °C (B350, B450, B550, B650) on soil aggregation and moisture retention was evaluated in this study. Based on the results, B550 had the largest mean weight diameter, most water-stable aggregates, and highest available water content compared to the control, with increases of 235%, 39% and 166% compared to the control. On the other hand, B350 was identified as the weakest treatment, with no significant difference from the control. Using B550 and B650 significantly reduced the soil bulk density by 13% and 12% compared to the control. Therefore, the formation of micro-aggregates, the development of soil porosity, and the subsequent increase in soil available water are unavoidable during the addition of B550. The change in the hydrophilic character of biochar and the attainment of an optimal oxygen/carbon ratio with pyrolysis degradations is a critical factor in soil hydrology issues.
The aim of this study was to provide an overview of the approaches and methods used to assess the dynamics of soil organic matter (SOM). This included identifying relevant processes that describe and estimate SOM decomposition, lability, and humification for the purpose of sustainable management. Various existing techniques and models for the qualitative and quantitative assessment of SOM were evaluated to gain a better understanding of advances in organic matter transformation. This evaluation aimed to identify the strengths, limitations, and applications of these techniques and models, and to highlight new research directions in the field. Quantitative analysis of SOM can be performed using various parameters, including oxidation kinetics, lability, carbon management index, humification degree, humification index, and humification ratio. On the other hand, qualitative evaluation of SOM can involve techniques such as oxidizability, high-performance size-exclusion chromatography, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, visual examination, smell, assessment of microorganism content, plant growth, cation exchange capacity, type of organic material, and decomposition. These techniques and parameters provide valuable insights into the characteristics and transformation of SOM, enabling a comprehensive understanding of its dynamics. Evaluating SOM dynamics is of utmost importance as it is a determining factor for soil health, fertility, organic matter stability, and sustainability. Therefore, developing SOM models and other assessment techniques based on soil properties, environmental factors, and management practices can serve as a tool for sustainable management. Long-term or extensive short-term experimental data should be used for modeling to obtain reliable results, especially for quantitative SOM transformation analysis, and changes in the quality and quantity of SOM should be considered when developing sustainable soil management strategies.
The present study aims to test and evaluate the efficiency of a new modified method of organic matter evaluation. It allows the assessment of the quality and quantity of the primary soil organic matter and the stable organic fractions separately. The new method was tested in six soil samples of different localities in the Czech Republic. This method is based on observing reaction kinetics during the oxidation of soil organic matter and measuring the cation-exchange capacity of stable organic fractions. The results were compared with classical methods, which rely on the isolation of humic substances, determination of the content of humic acids and fulvic acids and their ratio CHA:CFA, quotient E4/6, and fractionation of soil organic matter according to resistance to oxidation. It turned out that the results of the new modified method are more sensitive in comparison with the results obtained by classical procedures. The linear regression demonstrated the dependence between the amounts of soil organic matter determined by the classical method compared with the modified method. Moreover, the new modified method was found to be faster and not demanding on laboratory equipment. The new method has been improved to be easily repeatable, and some shortcomings of the previous method were eliminated. Based on our results and other recent studies, the modified method may be recommended for the practical evaluation of soil organic matter conditions.
Cultivation of energy crops is a part of modern agriculture. In particular, maize (Zea mays L.) is widely grown in central Europe. However, in terms of erosion risk and high demands on fertilization and protection against diseases and pests, its growing is not environmentally friendly. Therefore, possibilities of utilization of other more environmentally friendly energy crops have been examined at present. The aim of the study was to evaluate the effects of various fertilization (mineral, digestate, control) on the yields of tall wheatgrass (TWG) (Elymus elongatus subsp. ponticus) and reed canary grass (RCG) (Phalaris arundinacea L.) cultivated in a long-term field experiment on the experimental site in Czech Republic. The energy profit from cultivation of these crops and its protective anti-erosion effect were evaluated. The average yields ranged from 4.6 (RCG, mineral fertilization) to 7.4 t/ha (TWG, digestate fertilization). The more profitable species was tall wheatgrass, the biomass of which also had the higher heating value. The energy profit ranged from 80 GJ/ha (RCG, control variant and mineral fertilization) to 133 GJ/ha (TWG, digestate and mineral fertilization). It has been found that the tested plants excel in anti-erosion effect and could therefore be a suitable alternative to maize, especially in less-favored areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.