Prenylation is a ubiquitous late-stage modification in nature that often confers significantly improved bioactivity for secondary metabolites. While this lipophilic modification renders enhanced potency, the lipophilic tag(s) can diminish bioavailability and adversely alter drug transportation and metabolism. Thus, a functional-group-tolerant, mild, and selective latestage CÀ H functionalization of prenyl tags would present a great potential in drug discovery programs but could also impact other fields, such as agrochemistry and chemical biology. Herein we report an exocyclicstrain-driven cross-metathesis reaction of prenyl tags, a formal double CÀ H oxidation protocol, that can be used for the selective late-stage derivatization of prenylated compounds and natural products. This methodology avoids the need for prefunctionalization of target molecules and affords ready access to an unprecedented library of oxo-and aza-prenylated complex molecules. Thus, in a broader context, this methodology extends late-stage functionalization beyond that available to nature.
Prenylation is a ubiquitous late‐stage modification in nature that often confers significantly improved bioactivity for secondary metabolites. While this lipophilic modification renders enhanced potency, the lipophilic tag(s) can diminish bioavailability and adversely alter drug transportation and metabolism. Thus, a functional‐group‐tolerant, mild, and selective late‐stage C−H functionalization of prenyl tags would present a great potential in drug discovery programs but could also impact other fields, such as agrochemistry and chemical biology. Herein we report an exocyclic‐strain‐driven cross‐metathesis reaction of prenyl tags, a formal double C−H oxidation protocol, that can be used for the selective late‐stage derivatization of prenylated compounds and natural products. This methodology avoids the need for prefunctionalization of target molecules and affords ready access to an unprecedented library of oxo‐ and aza‐prenylated complex molecules. Thus, in a broader context, this methodology extends late‐stage functionalization beyond that available to nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.