The chiral recognition mechanism of a cinchona alkaloid-based chiral stationary phase (CSP) showing high enantiomer discrimination potential for 2-methoxy-2-(1-naphthyl)propionic acid (MalphaNP acid) was investigated. Conformational and structural analyses of the 1:1 complexes of 9-O-(tert-butylcarbamoyl) quinine selector (SO) and MalphaNP acid (selectand, SA) were carried out employing NMR spectroscopy in solution, Fourier-transform infrared (FT-IR) spectroscopy, and solid-state X-ray diffraction analysis. Intramolecular NOEs of a soluble analogue of the CSP afforded the conformational states of the free and complexed form of the selector. The (1)H-NMR spectra revealed that the free form of the SO constitutes anti-open as well as anti-closed and/or syn-closed conformers. Upon complexation with the (S)-MalphaNP acid enantiomer to form the more stable diastereomeric associate, a conformational transition of the selector takes place, resulting in the synthesis of the anti-open conformer nearly exclusively. FT-IR spectra reveal that, besides the primary ion-pairing interaction, stereoselective hydrogen bonding stabilizes the more stable complex via the amide hydrogen of the SO. X-ray diffraction analysis of 9-O-(tert-butylcarbamoyl)quinine and (S)-MalphaNP acid complex further revealed the occurrence of a bidentate H-bond-mediated ionic interaction between SO and SA as well as the lack of pi-pi interaction in the 1:1 complex, and corroborated the conclusions derived from spectroscopic and chromatographic studies.
The enantiodiscriminating potential of the weak anion exchange-type quinine-based chiral stationary phases (CSPs) for direct enantiomer separation of racemic 2-methoxy-2-(1-naphthyl)propionic acid (selectand, SA) was studied. The influence of structure variations of the selector (SO) in the carbamate functional group and/or in the C6' position of quinoline moiety on retention and enantioselectivity was investigated. Systematic chromatographic studies were made to gain more insight into the overall chiral recognition mechanism for a given mobile phase. In this context, the tert-butylcarbamoyl quinine and the corresponding diisopropylphenyl-derived selector provided the highest resolution and enantioselectivity under polar-organic conditions with the elution order of (R) before the (S) enantiomer. When the bulkiness of the substituents in the C6' position of the SO was increased, the selectivity was decreased in all cases. Alkylation of the nitrogen atom in the carbamate functionality of the SO resulted in the complete loss of enantiomer separation, confirming the crucial importance of the hydrogen-bond formation involved in the stereodiscriminating events. In addition, ten different mono-, bi-, or trivalent acids, necessary as competitor molecules (counter-ions) of the mobile phase, were screened to judge their influence on retention and overall enantioselectivity. Among them, acetic acid, formic acid, N-acetylglycine, and glycolic acid proved to be the most promising counter-ions with R(S) values of 6.35, 6.81, 8.19, and 7.34, respectively. On the basis of chromatographic data, a tentative molecular recognition model was proposed. Simultaneous ion-pairing and hydrogen bonding, in concert with pi-pi stacking and steric interactions, were expected to be responsible for chiral recognition mechanism. This was partially corroborated by structural and/or conformational analysis of the tert-butylcarbamoyl quinine-2-methoxy-2-(1-naphthyl)propionic acid (SO-SA) complex.
Optical resolution of the enantiomers of new 4(3H)-quinazolone derivatives is investigated using the alpha1-acid glycoprotein chiral stationary phase (Chiral-AGP). Stereoselective separation of the model compounds can be controlled by varying the pH and adding uncharged organic modifiers (acetonitrile and 2-propanol) to the mobile phase. For the majority of quinazolone derivatives, Chiral-AGP is proved to be an excellent enantioselector, because optimized chromatographic conditions allow for the baseline separation of the enantiomers. Separation factors between 1.19 and 1.85 are obtained. The effects of acetonitrile and 2-propanol on the chromatographic behavior of the model compounds are quite different because of their different hydrophobic- and hydrogen-bonding properties. The eluent pH and organic modifier concentration also contributes to the chiral recognition by altering the protein environment. The analysis of the experimental results leads to new information about the chromatographic mechanism on a Chiral-AGP surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.