Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 (PLA1) and A2 (PLA2) activity, which are common in host cell-targeting bacterial toxins and the venoms of certain insects and reptiles1,2. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors (Tle). Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D (PLD)3, is a member of the Tle superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). While prior studies have specifically implicated PldA and the H2-T6SS in pathogenesis3–5, we uncovered a specific role for the effector and its secretory machinery in intra- and inter-species bacterial interactions. Furthermore we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine (PE), the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the ongoing evolution of pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.