The aim of this work was to study the possible co-infection of KI and WU polyomavirus (KIPyV and WUPyV, respectively) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory samples and to detect the seroprevalence of KIPyV and WUPyV. A total of 1030 nasopharyngeal samples were analyzed from SARS-CoV-2 RNA positive (n = 680) and negative (n = 350) adults and children (age: 1 day to 94.2 years) collected from August 2020 to October 2021. KIPyV DNA was detected in two SARS-CoV-2-positive samples (2/680, 0.29%) and in three SARS-CoV-2-negative samples (3/350, 0.86%). WUPyV DNA was observed in one-one samples from both groups (1/680, 0.15% vs. 1/350, 0.29%). We did not find an association between SARS-CoV-2 and KIPyV or WUPyV infection, and we found low DNA prevalence of polyomaviruses studied after a long-term lockdown in Hungary. To exclude a geographically different distribution of these polyomaviruses, we studied the seroprevalence of KIPyV and WUPyV by enzyme-linked immunosorbent assay among children and adults (n = 692 for KIPyV and n = 705 for WUPyV). Our data confirmed that primary infections by KIPyV and WUPyV occur mainly during childhood; the overall seropositivity of adults was 93.7% and 89.2% for KIPyV and WUPyV, respectively. Based on our data, we suggest that the spread of KIPyV and WUPyV might have been restricted in Hungary by the lockdown.
Our aim was to study the seroprevalence of human polyomaviruses (HPyV) linked to skin diseases. A total of 552 serum samples were analysed by the enzyme-linked immunosorbent assay to detect IgG antibodies against Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7 and Trichodysplasia spinulosa-associated polyomavirus (TSPyV) using recombinant major capsid proteins of these viruses. The individuals (age 0.8–85 years, median 33) were sorted into seven age groups: <6, 6–10, 10–14, 14–21, 21–40, 40–60 and >60 years. The adulthood seroprevalence was 69.3%, 87.7%, 83.8% and 85% for MCPyV, HPyV6, HPyV7 and TSPyV, respectively. For all four polyomaviruses, there was increasing seropositivity with age until reaching the adulthood level. There was a significant increase in seroreactivity for those age groups in which the rate of already-infected individuals also showed significant differences. The adulthood seropositvity was relatively stable with ageing, except for TSPyV, for which elevated seropositivity was observed for the elderly (>60 years) age group. Since seroepidemiological data have been published with wide ranges for all the viruses studied, we performed a comprehensive analysis comparing the published age-specific seropositivities to our data. Although the cohorts, methods and even the antigens were variable among the studies, there were similar results for all studied polyomaviruses. For MCPyV, geographically distinct genotypes might exist, which might also result in the differences in the seroprevalence data. Additional studies with comparable study groups and methods are required to clarify whether there are geographical differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.