Rotavirus-associated enteritis has been reported in pheasants, but there is no information on the genetic/antigenic features of pheasant rotaviruses. In this study, we sequenced the VP7-encoding genome segment of three pheasant rotavirus strains detected during 2008 in Hungary. The full-length genome segment was 1,070 bp long, while the open reading frame was predicted to encode a 330-aa-long protein. The nucleotide sequence identities among the three pheasant rotavirus strains were high (> or =94%), whereas the range of nucleotide sequence identities to other avian and mammalian rotavirus VP7 genes fell between 68 and 73% and between 60 and 66%, respectively. Our findings indicate that these Hungarian pheasant rotaviruses need to be considered representatives of a new VP7 genotype specificity, designated G23.
In the southeast of Hungary a sparrow hawk (Accipiter nisus) and several goshawk (Accipiter gentilis) fledglings succumbed to encephalitis manifesting as an acute neurological disease during the summers of 2004 and 2005. Both years the causative agent was identified as a lineage 2 West Nile virus. This is the first description of clinical, pathological and immunohistochemical findings of infection caused by a neuroinvasive, lineage 2 West Nile virus and the first evidence of its circulation in continental Europe.
The objective of our study was to develop and evaluate a TaqMan real-time RT-PCR (RRT-PCR) assay for universal detection of influenza A (IA) viruses. The primers and LNA-modified octanucleotide probe were selected to correspond to extremely conserved regions of the membrane protein (MP) segment identified by a comprehensive bioinformatics analysis including 10,405 IA viruses MP sequences, i.e., all of the sequences of the Influenza Virus Sequence database collected as of August 20, 2009. The RRT-PCR has a detection limit of approximately five copies of target RNA/reaction and excellent reaction parameters tested in four IA viruses reference laboratories. The inclusivity of the assay was estimated at both the bioinformatic and the experimental level. Our results predicted that this RRT-PCR assay was able to detect 99.5% of known human IA virus strains, 99.84% of pandemic influenza A (H1N1) strains, 99.75% of avian strains, 98.89% of swine strains, 98.15% of equine strains, and 100% of influenza A viruses of other origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.