Factor VIII (FVIII) replacement therapy in Hemophilia A (HA) is complicated by a short half-life and high incidence of inhibitory antibody response against the protein. Phosphatidylinositol (PI) containing lipidic nanoparticles have previously been shown to reduce the immunogenicity and prolong the half-life of full length FVIII. It has not been established whether this prolongation in half-life improves hemostatic efficacy and whether this approach could be extended to the B-domain deleted form of FVIII (BDD FVIII). In the current study, we evaluated the pharmacokinetics (PK), hemostatic efficacy and immunogenicity of BDD FVIII associated with PI nanoparticles (PI-BDD FVIII) in HA mice. Comparative human PK was predicted using an ‘informed scaling’ approach. PI-BDD FVIII showed a ~ 1.5-fold increase in terminal half-life compared to free BDD FVIII following i.v. bolus doses of 40 IU/kg. PI-BDD FVIII treated animals retained hemostatic efficacy longer than the free FVIII treated group in a tail vein transection model of hemostasis. PI association reduced the development of inhibitory and binding antibodies against BDD FVIII after a series of i.v. injections. The combined improvements in circulating half-life and hemostatic efficacy could significantly prolong the time above clinically established therapeutic thresholds of prophylactic FVIII replacement therapy in humans.
On December 16, 2020, the FDA granted regular approval to margetuximab-cmkb (MARGENZA), in combination with chemotherapy, for the treatment of adult patients with HER2-positive (HER2+) metastatic breast cancer who have received two or more prior anti-HER2 regimens, at least one of which was for metastatic disease. Approval was based on data from SOPHIA, a multicenter, randomized, open-label, active controlled study comparing margetuximab with trastuzumab, in combination with chemotherapy. The primary efficacy endpoint was progression-free survival (PFS) by blinded independent central review. SOPHIA demonstrated a 0.9-month difference in median PFS between the two treatment arms [5.8 vs. 4.9 months, respectively; stratified HR, 0.76 (95% confidence interval: 0.59–0.98; P = 0.0334)]. Overall survival (OS) was immature at the data cut-off date of September 10, 2019. Infusion-related reactions (IRR) are an important safety signal associated with margetuximab plus chemotherapy. In SOPHIA, 13% of patients treated with margetuximab plus chemotherapy reported IRRs, of which 1.5% were grade 3. The most commonly reported adverse drug reactions (>10%) with margetuximab in combination with chemotherapy were fatigue/asthenia, nausea, diarrhea, vomiting, constipation, headache, pyrexia, alopecia, abdominal pain, peripheral neuropathy, arthralgia/myalgia, cough, decreased appetite, dyspnea, IRR, palmar-plantar erythrodysesthesia, and extremity pain. Overall, the favorable risk-benefit profile for margetuximab when added to chemotherapy supported its approval for the intended indication.
Introduction Ursolic acid (UA) is a pentacyclic triterpene acid present in many plants, including apples, basil, cranberries, and rosemary. UA suppresses proliferation and induces apoptosis in a variety of tumor cells via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Given that single agent therapy is a major clinical obstacle to overcome in the treatment of cancer, we sought to enhance the anti-cancer efficacy of UA through rational design of combinatorial therapeutic regimens that target multiple signaling pathways critical to carcinogenesis.Methodology Using a predictive simulation-based approach that models cancer disease physiology by integrating signaling and metabolic networks, we tested the effect of UA alone and in combination with 100 other agents across cell lines from colorectal cancer, non-small cell lung cancer and multiple myeloma. Our predictive results were validated in vitro using standard molecular assays. The MTT assay and flow cytometry were used to assess cellular proliferation. Western blotting was used to monitor the combinatorial effects on apoptotic and cellular signaling pathways. Synergy was analyzed using isobologram plots.Results We predictively identified c-Jun N-terminal kinase (JNK) as a pathway that may synergistically inhibit cancer growth when targeted in combination with NFκB. UA in combination with the pan-JNK inhibitor SP600125 showed maximal reduction in viability across a panel of cancer cell lines, thereby corroborating our predictive simulation assays. In HCT116 colon carcinoma cells, the combination caused a 52% reduction in viability compared with 18% and 27% for UA and SP600125 alone, respectively. In addition, isobologram plot analysis reveals synergy with lowered doses of the drugs in combination. The combination synergistically inhibited proliferation and induced apoptosis as evidenced by an increase in the percentage sub-G1 phase cells and cleavage of caspase 3 and poly ADP ribose polymerase (PARP). Combination treatment resulted in a significant reduction in the expression of cyclin D1 and c-Myc as compared with single agent treatment.Conclusions Our findings underscore the importance of targeting NFκB and JNK signaling in combination in cancer cells. These results also highlight and validate the use of predictive simulation technology to design therapeutics for targeting novel biological mechanisms using existing or novel chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.