Cells acquire fatty acids from dietary sources or via de novo palmitate production by fatty acid synthase (FASN). Although most cells express FASN at low levels, it is upregulated in cancers and during replication of many viruses. The precise role of FASN in disease pathogenesis is poorly understood, and whether de novo fatty acid synthesis contributes to host or viral protein acylation has been traditionally difficult to study. We describe a cell permeable, click-chemistry compatible alkynyl-acetate analog (Alk-4) that functions as a reporter of FASN-dependent protein acylation. In a FASN-dependent manner, Alk-4 selectively labeled the cellular protein interferon-induced transmembrane protein 3 (IFITM3) at its palmitoylation sites, and the HIV-1 matrix protein at its myristoylation site. Alk-4 metabolic labeling also enabled biotin-based purification and identification of more than 200 FASN-dependent acylated cellular proteins. Thus, Alk-4 is a useful bioorthogonal tool to selectively probe FASN-mediated protein acylation in normal and diseased states.
Heat is an established method to inactivate coronaviruses, and there is utility in using heat to reduce viral load on common touch points in vehicles exposed to a person shedding SARS-CoV-2. As SARS-CoV-2 is a Biosafety level (BSL)-3 pathogen, real-world testing of heat as a sanitation method for public and private vehicles becomes a challenge, requiring a surrogate coronavirus that can be handled safely outside of a BSL-3 facility. In this study, we used Bovine Coronavirus (BCoV) as a surrogate for SARS-CoV-2 to test the efficacy of heat-based betacoronavirus inactivation. In vitro, a 30-minute exposure to 56°C completely inactivated BCoV in solution, and a 15-minute exposure reduced recovery of BCoV >1000-fold. When heated to 56°C for 15 minutes, the infectivity of BCoV spotted and dried on typical porous and non-porous automobile interior materials was reduced by 99 - 99.99%. When BCoV was spotted and dried on hard plastic (seat) material placed inside an out of service transit bus, 56°C heat for 30 minutes reduced BCoV infectivity 85 - 99.5%. Thus, 56°C is an accessible, rapid, and effective method to inactivate coronaviruses inside motor vehicles.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.