Signature is used for recognition of an individual. Signature is considered as a mark that an individual write on a paper for his/her identity or proof. It is used as a unique feature for identifying an individual. It is highly used in social and business functions which gives rise to verification of signature. There are chances of signature getting forged. Hence, the need to identify signature as genuine of forged is utmost important. In this paper, identification of signature as genuine or forged is done using two approaches. First approach is using SVM and second is using CNN. For SVM, pre-processing of signature image is done and feature extraction is performed. Features extracted are histogram of gradient, shape, aspect ratio, bounding area, contour area and convex hull area. Further, SVM is applied to classify signature as genuine or forged and accuracy is determined. In the second approach, signature image is pre-processed, CNN is used to classify signature as genuine or forged and accuracy is determined. Dataset used here is ICDAR Dutch dataset along with 80 signatures taken from 4 people.Dutch dataset consists of 362 signature imagesand signature images taken from 4 people consists 10 genuine and 10 forged signatures which sums to 442 signature images. The proposed system provides accuracy of 86.39% using SVM and around 83.78% using CNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.