Baseline and post-procedure NGAL are progressively elevated according to the baseline stage of CKD. Using a twofold rise in NGAL, 46.7% of composite CI-AKI is detected and complements the 53.3% of cases identified using KDIGO criteria. Traditional risk predictors were not independently associated with this composite outcome.
Nitric oxide (NO), a small gas molecule, has long been known to be a potent inhibitor of platelet function but the physiological and pathological implications of platelet inhibition by NO have not been well clarified. We recently showed that the addition of nitrite to platelet-rich plasma in the presence of erythrocytes could inhibit platelet aggregation and this inhibitory effect of nitrite + erythrocytes was enhanced by deoxygenation of erythrocytes as measured by P-selectin expression and cGMP production. In order to study the nitrite effect on platelets at different oxygen levels, we used the flow cytometric assays to detect platelet membrane surface markers upon activation. The P-selectin and activated gpIIb/IIIa expression on platelet membranes in response to ADP, collagen and thrombin stimulation was measured at various hematocrit and oxygen levels. Nitrite (0.1 to 1.0 μM) significantly decreased the percentage of these surface markers on the platelet membrane at the hematocrit values above 23% and oxygen levels lower than 49 mmHg. The inhibitory effect of nitrite was augmented by increasing hematocrit values and decreasing oxygen saturation. C-PTIO (an NO scavenger) prevented the platelet inhibition by nitrite + erythrocytes whereas the inhibitors of NO synthase and xanthine oxidoreductase had no effect. These results support the proposal that circulating nitrite decreases platelet reactivity in the presence of partially deoxygenated erythrocytes through its reduction to NO, which may also explain certain differences between arterial and venous thrombosis and support directly the role of deoxyhemoglobin in this process. We believe that our flow cytometric assays offer a possibility to identify the individual molecular process involved in these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.