The effect of dry yeast (DY) (Saccharomyces cerevisiae) supplementation in a high-concentrate diet was evaluated for rumen fermentation, blood parameters, microbial populations, and growth performance in fattening steers. Sixteen crossbred steers (Charolais x American Brahman) at 375 ± 25 kg live weight were divided into four groups that received DY supplementation at 0, 5, 10, and 15 g/hd/d using a completely randomized block design. Basal diets were fed as a total mixed ration (roughage to concentrate ratio of 30:70). Results showed that supplementation with DY improved dry matter (DM) intake and digestibility of organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (p < 0.05), but DM and crude protein (CP) were similar among treatments (p > 0.05). Ruminal pH (>6.0) of fattening steer remained stable (p > 0.05), and pH was maintained at or above 6.0 with DY. The concentration of propionic acid (C3) increased (p < 0.05) with 10 and 15 g/hd/d DY supplementation, while acetic acid (C2) and butyric acid (C4) decreased. Methane (CH4) production in the rumen decreased as DY increased (p < 0.05). Fibrobacter succinogenes and Ruminococcus flavefaciens populations increased (p < 0.05), whereas protozoal and methanogen populations decreased with DY addition at 10 and 15 g/hd/d, while Ruminococcus albus did not change (p > 0.05) among the treatments. Adding DY at 10 and 15 g/hd/d improved growth performance. Thus, the addition of DY to fattening steers with a high concentrate diet improved feed intake, nutrient digestibility, rumen ecology, and growth performance, while mitigating ruminal methane production.
Urea–lime-treated rice straw fed to Thai native beef cattle was supplemented with dry yeast (DY) (Saccharomyces cerevisiae) to assess total feed intake, nutrient digestibility, rumen microorganisms, and methane (CH4) production. Sixteen Thai native beef cattle at 115 ± 10 kg live weight were divided into four groups that received DY supplementation at 0, 1, 2, and 3 g/hd/d using a randomized completely block design. All animals were fed concentrate mixture at 0.5% of body weight, with urea–lime-treated rice straw fed ad libitum. Supplementation with DY enhanced total feed intake and digestibility of neutral detergent fiber and acid detergent fiber (p < 0.05), but dry matter, organic matter and crude protein were similar among treatments (p > 0.05). Total volatile fatty acid (VFA) and propionic acid (C3) increased (p < 0.05) with 3 g/hd/d DY supplementation, while acetic acid (C2) and butyric acid (C4) decreased. Protozoal population and CH4 production in the rumen decreased as DY increased (p < 0.05). Populations of F. succinogenes and R. flavefaciens increased (p < 0.05), whereas methanogen population decreased with DY addition at 3 g/hd/d, while R. albus was stable (p > 0.05) throughout the treatments. Thus, addition of DY to cattle feed increased feed intake, rumen fermentation, and cellulolytic bacterial populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.