Biological invasions pose a serious threat to biodiversity and ecosystem functioning across ecosystems. Invasions by ecosystem engineers, in particular, have been shown to have dramatic effects in recipient ecosystems. For instance, invasion by earthworms, a below‐ground invertebrate ecosystem engineer, in previously earthworm‐free ecosystems alters the physico‐chemical characteristics of the soil. Studies have shown that such alterations in the soil can have far‐reaching impacts on soil organisms, which form a major portion of terrestrial biodiversity. Here, we present the first quantitative synthesis of earthworm invasion effects on soil micro‐organisms and soil invertebrates based on 430 observations from 30 independent studies. Our meta‐analysis shows a significant decline of the diversity and density of soil invertebrates in response to earthworm invasion with anecic and endogeic earthworms causing the strongest effects. Earthworm invasion effects on soil micro‐organisms were context‐dependent, such as depending on functional group richness of invasive earthworms and soil depth. Microbial biomass and diversity increased in mineral soil layers, with a weak negative effect in organic soil layers, indicating that the mixing of soil layers by earthworms (bioturbation) may homogenize microbial communities across soil layers. Our meta‐analysis provides a compelling evidence for negative effects of a common invasive below‐ground ecosystem engineer on below‐ground biodiversity of recipient ecosystems, which could potentially alter the ecosystem functions and services linked to soil biota.
Despite extensive documentation of the ecological and economic importance of Old World fruit bats (Chiroptera: Pteropodidae) and the many threats they face from humans, negative attitudes towards pteropodids have persisted, fuelled by perceptions of bats as being pests and undesirable neighbours. Such long-term negativity towards bats is now further exacerbated by more recent disease-related concerns, particularly associated with the current COVID-19 pandemic. There remains an urgent need to investigate and highlight the positive and beneficial aspects of bats across the Old World. While previous reviews have summarised these extensively, numerous new studies conducted over the last 36 years have provided further valuable data and insights which warrant an updated review. Here we synthesise research on pteropodid-plant interactions, comprising diet, ecological roles, and ecosystem services, conducted during 1985-2020. We uncovered a total of 311 studies covering 75 out of the known 201 pteropodid species (37%), conducted in 47 countries. The majority of studies documented diet (52% of all studies; 67 pteropodid species), followed by foraging movement (49%; 50 pteropodid species), with fewer studies directly investigating the roles played by pteropodids in seed dispersal (24%; 41 pteropodid species), pollination (14%; 19 pteropodid species), and conflict with fruit growers (12%; 11 pteropodid species). Pteropodids were recorded feeding on 1072 plant species from 493 genera and 148 families, with fruits comprising the majority of plant parts consumed, followed by flowers/nectar/pollen, leaves, and other miscellaneous parts. Sixteen pteropodid species have been confirmed to act as pollinators for a total of 21 plant species, and 29 pteropodid species have been confirmed to act as seed dispersers for a total of 311 plant species. Anthropogenic threats disrupting bat-plant interactions in the Old World include hunting, direct persecution, habitat loss/disturbance, invasive species, and climate change, leading to ecosystem-level repercussions. We identify notable research gaps and important research priorities to support conservation action for pteropodids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.