<span lang="EN-US">Ground grid system is important for preventing the hazardous effects of overvoltage in high voltage substations due to fault current perhaps from lightning strike or device malfunction. Therefore, this study aimed to investigate the effects of overvoltage on square, rectangular and L-shaped ground grids with ground rods being distributed in mesh-pattern by using alternate transients program/electromagnetic transients program (ATP/EMTP) program. The models were simulated in the cases that 25 kA-fault current being injected into the center or one of the corners of ground grids. The results showed that the highest level of overvoltage (6.3349 kV) was detected at the corner of rectangular ground grid when the fault current was injected into its corner. However, the lowest level of overvoltage was found when the fault current was injected into the center of square ground grid. The results from this study indicated that ATP/EMTP program was useful for preliminary investigation of overvoltage on ground grids of different shapes. The obtained knowledge could be beneficial for further designing of ground grid systems of high voltage substations to receive the minimal damages due to fault current.</span>
<p><span style="font-family: Times New Roman;">The power networks<em> </em>with reliable transmission and distribution systems require high voltage substations with effective ground grid systems. Therefore, this study aimed to analyze the effects of overvoltage on ground grid systems within high voltage substations in two cases, including a single substation and the two neighboring substations, by using ATP/EMTP and ANSYS softwares. The simulations were performed to show both graphs and 3D results when the fault current flowed into the ground grids of substations at various positions. In case of the single high<em> </em>voltage substation, the overvoltage was highest when the fault current was injected at the corner of ground grid. However, in case of two neighboring high voltage substations, the levels of overvoltage were similar between that caused by injecting the fault current at the center and at the corner of ground grid. The simulation showed that overvoltage which occurring at the ground grid of high voltage substation A could permeate to the ground grid of nearby high voltage substation B, which nevertheless depending on the how the fault current was injected at different spots. The data from these simulations and analysis can be useful for future designs of ground grid systems with high reliability. </span></p>
The power networks with reliable transmission and distribution systems require high voltage substations with effective ground grid systems. Therefore, this study aimed to analyze the effects of overvoltage on ground grid systems within high voltage substations in two cases, including a single substation and the two neighboring substations, by using ATP/EMTP and ANSYS softwares. The simulations were performed to show both graphs and 3D results when the fault current flowed into the ground grids of substations at various positions. In case of the single high voltage substation, the overvoltage was highest when the fault current was injected at the corner of ground grid. However, in case of two neighboring high voltage substations, the levels of overvoltage were similar between that caused by injecting the fault current at the center and at the corner of ground grid. The simulation showed that overvoltage which occurring at the ground grid of high voltage substation A could permeate to the ground grid of nearby high voltage substation B, which nevertheless depending on the how the fault current was injected at different spots. The data from these simulations and analysis can be useful for future designs of ground grid systems with high reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.