The following paper presents a comparison study of various machine learning techniques in recognition of activities of daily living (ADL), with special attention being given to movements during human falling and the distinction among various types of falls. The motivation for the development of physical activity recognition algorithm includes keeping track of users' activities in real-time, and possible diagnostics of unwanted and unexpected movements and/or events. The activities recorded and processed in this study include various types of daily activities, such as walking, running, etc., while fall activities include falling forward, falling backward, falling left and right (front fall, back fall and side fall). The algorithm was trained on two publicly available datasets containing signals from an accelerometer, a magnetometer and a gyroscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.