With ever increasing use of natural gas to generate electricity, installed natural gas fired microturbines are found in residential areas to generate electricity locally. This research work discusses a generalized methodology for assessing optimal capacity and locations for installing natural gas fired microturbines in distribution residential network.The overall objective is to place microturbines to minimize the system power loss occurring in the electrical distribution network; in such a way that the electric feeder does not need any up-gradation. The IEEE 123 Node Test Feeder is selected as the test bed for validating the developed methodology. Three-phase unbalanced electric power flow is run in OpenDSS through COM server, and the gas distribution network is analyzed using GASWorkS. The continual sensitivity analysis methodology is developed to select multiple DG locations and annual simulation is run to minimize annual average losses.The proposed placement of microturbines must be feasible in the gas distribution network and should not result into gas pipeline reinforcement. The corresponding gas distribution network is developed in GASWorkS software, and nodal pressures of the gas system are checked for various cases to investigate if the existing gas distribution network can accommodate the penetration of selected microturbines. The results indicate the optimal locations suitable to place microturbines and capacity that can be accommodated by the system, based on the consideration of overall minimum annual average losses as well as the guarantee of nodal pressure provided by the gas distribution network. The proposed method is generalized and can be used for any IEEE test feeder or an actual residential distribution network.ii ACKNOWLEDGMENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.