Background: Long-term management of individuals post-stroke is essential due to the resultant chronic disability and risk for recurrent stroke. Mobile health technology shows increasing promise to provide cost-effective monitoring and support systems for the patient, caregiver, and healthcare team. Ideally, such systems will include stroke management adherence support, mechanisms to link patients and caregivers to resources, and secure longitudinal data collection with archive that are employed to optimize recovery.However, healthcare providers and computer science application developers must first collaborate to identify meaningful measures and develop methods to reliably gather such data remotely via mobile systems.Methods: mStroke is a mobile health system composed of two sensors and a mobile application designed to support optimal recovery for stroke survivors. Using the World Health Organization's International Classification of Functioning, Disability and Health model (ICF model), the authors identified 4 measures that are commonly used in the clinic and developed the mobile application features to support remote data collection: National Institutes of Health Stroke Scale (NIHSS) items 5 and 6 (Motor Arm and Leg function), Functional Reach Test (FRT), and 10 Meter Walk Test (10MWT). At a local inpatient rehabilitation facility, each measure was executed with 35 stroke survivors through simultaneous scoring by the mStroke system and standardized clinical assessment. Correlation coefficients were calculated for clinician versus mStroke system scoring.
After short-term, acute-care hospitalization for stroke, patients may be discharged home or other facilities for continued medical or rehabilitative management. The site of postacute care affects overall mortality and functional outcomes. Determining discharge disposition is a complex decision by the healthcare team. Early prediction of discharge destination can optimize poststroke care and improve outcomes. Previous attempts to predict discharge disposition outcome after stroke have limited clinical validations. In this study, readmission status was used as a measure of the clinical significance and effectiveness of a discharge disposition prediction. Low readmission rates indicate proper and thorough care with appropriate discharge disposition. We used Medicare beneficiary data taken from a subset of base claims in the years of 2014 and 2015 in our analyses. A predictive tool was created to determine discharge disposition based on risk scores derived from the coefficients of multivariable logistic regression related to an adjusted odds ratio. The top five risk scores were admission from a skilled nursing facility, acute heart attack, intracerebral hemorrhage, admission from “other” source, and an age of 75 or older. Validation of the predictive tool was accomplished using the readmission rates. A 75% probability for facility discharge corresponded with a risk score of greater than 9. The prediction was then compared to actual discharge disposition. Each cohort was further analyzed to determine how many readmissions occurred in each group. Of the actual home discharges, 95.7% were predicted to be there. However, only 47.8% of predictions for home discharge were actually discharged home. Predicted discharge to facility had 15.9% match to the actual facility discharge. The scenario of actual discharge home and predicted discharge to facility showed that 186 patients were readmitted. Following the algorithm in this scenario would have recommended continued medical management of these patients, potentially preventing these readmissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.