e growing demand for high-speed networks is increasing the use of high-frequency electromagnetic waves in wireless networks, including in microwave backhaul links and 5G. e relative higher frequency provides a high bandwidth, but it is very sensitive to obstructions and interference. Hence, when positioning a transmi erreceiver pair, the line-of-sight between them should be free of obstacles. Furthermore, the Fresnel zone around the line-of-sight should be clear of obstructions, to guarantee e ective transmission. When deploying microwave backhaul links or a cellular network there is a need to select the locations of the antennas accordingly. To help network planners, we developed an interactive tool that allows users to position antennas in di erent locations over a 3D model of the world. Users can interactively change antenna locations and other parameters, to examine clearance of Fresnel zones. In this paper we illustrate the interactive tool and the ability to test clearance in real-time, to support interactive network planning. CCS CONCEPTS •Networks →Network components; •Information systems →Spatial-temporal systems;
Microwave backhaul links are often used as wireless connections between telecommunication towers, in places where deploying optical fibers is impossible or too expensive. The relatively high frequency of microwaves increases their ability to transfer information at a high rate, but it also makes them susceptible to spatial obstructions and interference. Hence, when deploying wireless links, there are two conflicting considerations. First, the antennas height, selected from the available slots on each tower, should be as low as possible. Second, there should be a line of sight (LoS) between the antennas, and a buffer around the LoS defined by the first Fresnel zone should be clear of obstacles. To compute antenna heights, a planning system for wireless links has to maintain an elevation model, efficiently discover obstacles between towers, and execute Fresnel-zone clearance tests over a 3D model of the deployment area. In this paper we present a system and algorithms for computing height of antennas, by testing LoS and clearance of Fresnel zones. The system handles the following requirements: (1) the need to cover large areas, e.g., all of the USA, (2) big distance between towers, e.g., 100 kilometers, and (3) computing batches of thousands of pairs within a few minutes. We introduce three novel algorithms for efficient computation of antenna heights, we show how to effectively model and manage the large-scale geospatial data needed for the planning, and we present the results of tests over real-world settings.
In telecommunication networks, microwave backhaul links are often used as wireless connections between towers. ey are used in places where deploying optical bers is impossible or too expensive. e relatively high frequency of microwaves increases their ability to transfer information at a high rate, but it also makes them susceptible to obstructions and interference. When deploying microwave links, there should be a clear line of sight between every pair of receiver and transmi er, and a bu er around the line of sight de ned by the rst Fresnel zone should be clear of obstacles. In this paper we discuss the geospatial aspects of microwave backhaul planning and the challenges in developing a system for large scale planning, with the following requirements: (1) the need to cover all of the USA, (2) distance of up to 80 kilometers between towers, and (3) computing batches of thousands of pairs within a few minutes. CCS CONCEPTS •Networks →Wireless access points, base stations and infrastructure; •Information systems →Spatial-temporal systems;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.