The rotating biological contactor (RBC) is resistant to toxic chemical and shock loadings, and this results in significant organic and nutrient removal efficiencies. The RBC system offers a low-energy footprint and saves up to 90% in energy costs. Due to the system’s low-energy demand, it is easily operable with renewable energy sources, either solar or wind power. An RBC was employed to degrade pollutants in domestic wastewater through biodegradation mechanisms in this study. The high microbial population in the RBC bioreactor produced excellent biological treatment capacity and higher effluent quality. The results showed that the RBC bioreactor achieved an average removal efficiency of 73.9% of chemical oxygen demand (COD), 38.3% of total nitrogen (TN), 95.6% of ammonium, and 78.9% of turbidity. Investigation of operational parameters, disk rotational speed, HRT, and SRT, showed the biological performance impact. Disk rotational speed showed uniform effluent quality at 30–40 rpm, while higher values of disk rotational speed (>40 rpm) resulted in lower effluent quality in COD, TN, and turbidity. The longer hydraulic retention time and sludge retention time (SRT) facilitated higher biological performance efficiency. The longer SRTs enabled the higher TN removal efficiency because of the higher quantity of microbial biomass retention. The longer SRT also resulted in efficient sludge-settling properties and reduced volume of sludge production. The energy evaluation of the RBC bioreactor showed that it consumed only 0.14 kWh/m3, which is significantly lower than the conventional treatment methods; therefore, it is easily operable with renewable energy sources. The RBC is promising substitute for traditional suspended growth processes as higher microbial activity, lower operational and maintenance costs, and lower carbon foot print enhanced the biological performance, which aligns with the stipulations of ecological evolution and environment-friendly treatment.
The study presents the possible use of optoelectronic system for the measurement of values specific for hydrodynamics of two-phase gas very-high-viscosity liquid flow in vertical pipes. An experimental method was provided, and the findings were presented and analysed for selected values which characterise the two-phase flow.
The removal of solids is the most important step when treating rainwater. The article evaluates two designs of sedimentation tanks that can be used for the continuous separation of fine particles from water: OS—standard sedimentation tanks, and OW—swirl sedimentation tanks. The tanks were studied by conducting computational fluid dynamics (CFD) modeling and particle image velocimetry (PIV) experiments. The settling process in sedimentation tank was carried out at varying operating flow rates. A tank with a modified structure was used for the tests, where water was supplied by a nozzle placed at an angle. This solution made it possible to obtain a rotational flow that transported the suspended particles towards its wall, where downward axial velocity resulted in the settling of particles. Based on the research, it was observed that the flow patterns showed inward flow at the bottom of the tank and an upward flow and the lifting of the settled particles near the hatch at the bottom. The presented experimental measurements provided detailed insight into flow patterns, and valuable calibration and verification data for further CFD modeling. Traditional PIV techniques are useful in the case of standard design, whereas CFD is invaluable for supporting this work and for investigating the design of novel sedimentation tanks.
Aerosol is a multiphase system, created as a result of the dispersion of a liquid in a gaseous medium. The atomized liquids are most often water and fuel; however, they can be any other substance. Even a small addition of a substance that changes the rheological properties (i.e., the nature of the flow) can change the properties of the resulting aerosol. The most important parameters that characterize the aerosol are the outflow rate, the droplet diameter, the spray spectrum, and the spray angle. The latter is important when selecting atomizers, especially those working in groups on the sprayer boom. The spray angle is an important parameter of the atomization process, providing a great deal of information about the quality of the spray. This study presents the results of rheological tests and the atomization of aqueous solutions with varying concentrations of sodium carboxymethylcellulose (Na-CMC). We found that the spray angle decreased with increasing Na-CMC concentration in the solution, which is attributable to an increase in shear viscosity. The design of the atomizer is also important. The largest spray angles were obtained for an atomizer with a diameter of 0.02 m and with the inlet port being placed at an angle to the atomizer axis. Based on the experimental results for various liquids and atomizer designs, a correlation equation describing the spray angle is proposed.
This paper presents issues in the field of theory, construction, calculations, as well as the design of effervescent-swirl atomizers. The results of experimental studies of spraying liquids with different physico-chemical properties for this type of atomizers are discussed. Effervescent-swirl atomization is a complex process and its mechanism is not fully understood. Therefore, the purpose of the manuscript is the complexity of the atomization process and its mechanism as well as the influence of individual parameters on its efficiency were thoroughly analyzed. The analyzed parameters include: atomizer design, outlet shape, gas and liquid flow rate, injection pressure, physicochemical properties of the atomized liquid, pressure drop, outflow coefficient, spray angle, quantitative droplet distributions, and average droplet diameter. Moreover, in the work, on the basis of the literature review, the results of the research related to, inter alia, the phenomenon of air core formation and the influence of a number of parameters on the efficiency of the atomization process are analyzed. The literature review included in the work makes it possible to better understand the atomization process carried out in effervescent-swirl atomizers, and also provides better design criteria and analysis of the efficiency of the tested devices. The article presents correlation equations covering the basic features of the atomization process, which relate a large number of parameters influencing the efficiency of this process and the character of the sprayed liquid, which may be useful in design practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.