The spleen of the Weddell seal (Leptonychotes weddelli) may contract and inject red blood cells (RBCs) into the peripheral circulation during diving, but evidence for this hypothesis is indirect. Accordingly, we measured splenic dimensions by ultrasonography, plasma catecholamine concentrations, hemoglobin concentration, and hematocrit in five Weddell seals before and after intravenous epinephrine during halothane anesthesia and while awake at the surface after voluntary dives. Spleen size was reduced immediately after epinephrine injection or after the seal surfaced. Within the first 2 min after the seal surfaced, cephalocaudal splenic length was 71 +/- 2% (mean +/- SD; P < 0.05) and splenic thickness was 71 +/- 4% (P < 0.05) of the maximal resting values. Splenic size increased (half-time = 6-9 min) after the seal surfaced and was inversely correlated with plasma epinephrine and norepinephrine concentrations. Hemoglobin concentration increased from 17.5 +/- 5.3 g/dl (measured during general anesthesia) to 21.9 +/- 3.7 g/dl (measured in the first 2 min after surfacing). At these same times, the hematocrit increased from 44 +/- 12 to 55 +/- 8%. These values decreased (half-time = 12-16 min) after the seal surfaced. We estimate 20.1 liters of RBCs were sequestered at rest, presumably in the spleen, and released either on epinephrine injection or during diving. Catecholamine release and splenic contraction appear to be an integral part of the voluntary diving response of Weddell seals.
Although the consumption of myoglobin-bound O2 (MbO2) stores in seal muscles has been demonstrated in seal muscles during laboratory simulations of diving, this may not be a feature of normal field diving in which measurements of heart rate and lactate production show marked differences from the profound diving response induced by forced immersion. To evaluate the consumption of muscle MbO2 stores during unrestrained diving, we developed a submersible dual-wavelength laser near-infrared spectrophotometer capable of measuring MbO2 saturation in swimming muscle. The probe was implanted on the surface of the latissimus dorsi of five subadult male Weddell seals (Leptonychotes weddelli) released into a captive breathing hole near Ross Island, Antarctica. Four seals had a monotonic decline of muscle O2 saturation during free diving to depths up to 300 m with median slopes of -5.12 +/- 4.37 and -2.54 +/- 1.95%/min for dives lasting < 17 and > 17 min, respectively. There was no correlation between the power consumed by swimming and the desaturation rate. Two seals had occasional partial muscle resaturations late in dives, indicating transfer of O2 from circulating blood to muscle myoglobin. Weddell seals partially consume their MbO2 stores during unrestrained free diving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.