Information on metallophytes during reclamation of land contaminated with heavy metals is sparse. We investigated the response of D. carthusianorum calamine ecotype to Pb and Cd stress. We focused on in vitro selection of tolerant plant material for direct use in chemically degraded areas. Shoot cultures were treated with various concentrations of Pb or Cd ions. Plantlet status was estimated as micropropagation efficiency, growth tolerance index (GTI) and through physiological analysis. Moreover, determination of plant Pb, Cd and other elements was performed. The application of Pb(NO ) resulted in stronger growth inhibition than application of CdCl . In the presence of Pb ions, a reduction was observed of both, the micropropagation coefficient to 1.1-1.8 and the GTI to 48%. In contrast, Cd ions had a positive influence on tested cultures, expressed as an increase of GTI up to 243% on medium enriched with 1.0 μm CdCl . Moreover, photosynthetic pigment content in shoots cultivated on media with CdCl was higher than in control treatment. The adaptation to Cd was associated with decreased accumulation of phenols in the order: 0.0 μm > 1.0 μm > 3.0 μm > 5.5 μm CdCl . It seems that high tolerance to Cd is related to K uptake, which is involved in antioxidant defence. This work presents an innovative approach to the impact of Cd ions on plant growth and suggests a potential biological role of this metal in species from metalliferous areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.