This paper presents the analysis of existing forms of heat absorbing surfaces of air solar collectors, which gained the greatest popularity in the world. The obtained data allowed to conclude that there is a need for the development of solar collectors with air as a coolant with an improved form of heat absorber, which will reduce the operational and capital costs of solar systems and allow the efficient use of such structures in a moderate climate without additional mechanisms for the transfer of coolant. The use of computer simulation helped to compare the thermal characteristics of air-borne solar collectors of a different design. The substantiation of the expediency of installing as a heat absorber of flow turbulators in the form of a screw has been fulfilled, as well as the height of the air channel of the solar collector has been determined, in which the maximum heating of the transfer medium is observed. In addition, the loss of pressure in the air channel of the solar collector with flow turbulators was determined and the comparison of the obtained data with the values of pressure losses in the air collector of the matrix type and the air collector with V-shaped ribs was made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.