Sleep disruption is common in patients in the intensive care unit (ICU). The aim of the study was to measure sound levels during sleep-protected time in the ICU, determine sources of sound, assess the impact of sound levels and patient-related factors on duration and quality of patients' sleep. The study was performed between 2018 and 2019. A commercially available smartphone application was used to measure ambient sound levels. Sleep duration was measured using the Patient's Sleep Behaviour Observational Tool. Sleep quality was assessed using the Richards-Campbell Sleep Questionnaire (RCSQ). The study population comprised 18 (58%) men and 13 (42%) women. There were numerous sources of sound. The median duration of sleep was 5 (IQR 3.5–5.7) hours. The median score on the RCSQ was 49 (IQR 28–71) out of 100 points. Sound levels were negatively correlated with sleep duration. The cut-off peak sound level, above which sleep duration was shorter than mean sleep duration in the cohort, was 57.9 dB. Simple smartphone applications can be useful to estimate sound levels in the ICU. There are numerous sources of sound in the ICU. Individual units should identify and eliminate their own sources of sound. Sources of sound producing peak sound levels above 57.9 dB may lead to shorter sleep and should be eliminated from the ICU environment. The sound levels had no effect on sleep quality.
Aims and objectives: Sleep deprivation in the intensive care unit (ICU) has been linked to numerous complications. Light levels might impact the sleep of patients in the ICU. The aim of the study was to measure light levels during sleep-protected time in the ICU and to assess the impact of light intensity on sleep quantity/quality. Materials and methods: This prospective, observational study was conducted in a 10-bed, mixed surgical/medical ICU. For measuring light levels, a commercially available smartphone application was used. The measurements were performed between 23:30 and 06:15 hours at 15-minute intervals. To assess sleep quantity, we used Patient's Sleep Observation Behavioral Tool and to assess sleep quality, we used Richards-Campbell Sleep Scale. Results: The median number of time points at which patients were asleep was 20 (interquartile range, IQR 14-23) out of 25 (5 hours). The median self-reported quality of sleep (overall score) was 49 (IQR 28-71). The median values for individual questions are: question 1 (sleep depth)-54.0 (IQR 37-78), question 2 (sleep latency)-40.5 (IQR 6-90), question 3 (awakenings)-52.5 (IQR 28-76), question 4 (returning to sleep)-25.5 (IQR 11-78), and question 5 (sleep quality)-67.5 (IQR 5-76). No correlation was found between self-reported sleep quality and time spent asleep (p = 0.36). There was no correlation between average light levels during sleep-protected time and sleep quantity (p = 0.42)/sleep quality (p = 0.13). There was a correlation between average (13 ± 5 lux) light levels before sleep-protected time and sleep quality (p = 0.008). Conclusion: Mean light levels of 11 ± 9 lux during sleep-protected time have no negative impact on quantity and quality of sleep in intensive care unit patients. Light levels up to 18 lux directly before falling asleep improve patients' self-reported quality of sleep in the ICU. Clinical significance: Finding safe levels of light intensity during sleep-protected time in ICU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.