A simple, carbazole-based dithioamide receptor transports a variety of biologically relevant anions through lipid bilayers, as shown by direct fluorescent assays in LUVs and GUVs.
Synthetic ionophores able to transport bicarbonate and chloride anions across lipid bilayers are appealing for their wide range of potential biological applications. We have studied the bicarbonate and chloride transport...
Artificial chloride transporters have been intensely investigated in view of their potential medicinal applications. Recently, we have established 1,8-diamidocarbazoles as a versatile platform for the development of active chloride carriers. In the present contribution, we investigate the influence of various electron-withdrawing substituents in positions 3 and 6 of the carbazole core on the chloride transport activity of these anionophores. Using lucigenin assay and large unilamellar vesicles as models, the 3,6-dicyano- and 3,6-dinitro- substituted receptors were found to be highly active and perfectly deliverable chloride transporters, with EC50,270s value as low as 22 nM for the Cl−/NO3− exchange. Mechanistic studies revealed that diamidocarbazoles form 1:1 complexes with chloride in lipid bilayers and facilitate chloride/nitrate exchange by carrier mechanism. Furthermore, owing to its increased acidity, the 3,6-dinitro- substituted receptor acts as a pH-switchable transporter, with physiologically relevant apparent pKa of 6.4.
Synthetic ionophores able to transport bicarbonate and chloride anions across lipid bilayers are appealing for their wide range of potential biological applications. We have studied the bicarbonate and chloride transport by carbazoles with two amido/thioamido groups using a bicarbonate-sensitive europium(III) probe in liposomes and found a highly remarkable concentration dependence. This can be explained by a combination of two distinct transport mechanisms: HCO3−/Cl− exchange and a combination of unassisted CO2 diffusion and HCl transport, of which the respective contributions were quantified. The compounds studied were found to be highly potent HCl transporters. Based on the mechanistic insights on anion transport, we have tested the antimicrobial activity of these compounds and found good correlation with their ion transport properties and a high activity against Gram-positive bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.