Objective: This paper describes a methodology which enables computer-aided support for the planning, visualization and execution of personalized patient treatments in a specific healthcare process, taking into account complex temporal constraints and the allocation of institutional resources. To this end, a translation from a time-annotated computerinterpretable guideline (CIG) model of a clinical protocol into a temporal hierarchical task network (HTN) planning domain is presented.Methods and Material: The proposed method uses a knowledge-driven reasoning process to translate knowledge previously described in a CIG into a corresponding HTN Planning and Scheduling domain, taking advantage of HTNs known ability to i) dynamically cope with temporal and resource constraints, and ii) automatically generate customized plans. The proposed method, focusing on the representation of temporal knowledge and based on the identification of workflow and temporal patterns in a CIG, makes it possible to automatically generate time-annotated and resource-based care pathways tailored to the needs of any possible patient profile.Results: The proposed translation is illustrated through a case study based on a 70 pages long clinical protocol to manage Hodgkin's disease, developed by the Spanish Society of Pediatric Oncology. We show that an HTN planning domain can be generated from the corresponding specification of the protocol in the Asbru language, providing a running example of this translation. Furthermore, the correctness of the translation is checked and also the management of ten di↵erent types of temporal patterns represented in the protocol. By interpreting the automatically generated domain with a state-of-art HTN planner, a time-annotated care pathway is automatically obtained, customized for the patient's and institutional needs. The generated care pathway can then be used by clinicians to plan and manage the patients long-term care.Conclusion: The described methodology makes it possible to automatically generate patient-tailored care pathways, leveraging an incremental knowledge-driven engineering process that starts from the expert knowledge of medical professionals. The presented approach makes the most of the strengths inherent in both CIG languages and HTN planning and scheduling techniques: for the former, knowledge acquisition and representation of the original clinical protocol, and for the latter, knowledge reasoning capabilities and an ability to deal with complex temporal and resource constraints. Moreover, the proposed approach provides immediate access to technologies such as business process management (BPM) tools, which are increasingly being used to support healthcare processes.
Patient recruitment is one of the most important barriers to successful completion of clinical trials and thus to obtaining evidence about new methods for prevention, diagnostics and treatment. The reason is that recruitment is effort consuming. It requires the identification of candidate patients for the trial (the population under study), and verifying for each patient whether the eligibility criteria are met. The work we describe in this paper aims to support the comparison of population under study in different trials, and the design of eligibility criteria for new trials. We do this by introducing structured eligibility criteria, that enhance reuse of criteria across trials. We developed a method that allows for automated structuring of criteria from text. Additionally, structured eligibility criteria allow us to propose suggestions for relaxation of criteria to remove potentially unnecessarily restrictive conditions. We thereby increase the recruitment potential and generalizability of a trial. Our method for automated structuring of criteria enables us to identify related conditions and to compare their restrictiveness. The comparison is based on the general meaning of criteria, comprised of commonly occurring contextual patterns, medical concepts and constraining values. These are automatically identified using our pattern detection algorithm, state of the art ontology annotators and semantic taggers. The comparison uses predefined relations between the patterns, concept equivalences defined in medical ontologies, and threshold values. The result is a library of structured eligibility criteria which can be browsed using fine grained queries. Furthermore, we developed visualizations for the library that enable intuitive navigation of relations between trials, criteria and concepts. These visualizations expose interesting co-occurrences and correlations, potentially enhancing meta-research. The method for criteria structuring processes only certain types of criteria, which results in low recall of the method (18%) but a high precision for the relations we identify between the criteria (94%). Analysis of the approach from the medical perspective revealed that the approach can be beneficial for supporting trial design, though more research is needed.
Abstract. Medical research would benefit from automatic methods that support eligibility evaluation for patient enrollment in clinical trials and design of eligibility criteria. In this study we addressed the problem of formalizing eligibility criteria. By analyzing a large set of breast cancer clinical trials we derived a set of patterns, that capture typical structure of conditions, pertaining to syntax and semantics. We qualitatively analyzed their expressivity and evaluated coverage using regular expressions, running experiments on a few thousands of clinical trials also related to other diseases. Based on an early evaluation we conclude that derived patterns cover the language of eligibility criteria to a large extent and may serve as a semi-formal representation. We expect that extending the presented method for pattern recognition with recognition of ontology concepts will facilitate generating computable queries and automated reasoning for various applications.
Abstract. Modern medical vocabularies can contain up to hundreds of thousands of concepts. In any particular use-case only a small fraction of these will be needed. In this paper we first define two notions of a diseasecentric subdomain of a large ontology. We then explore two methods for identifying disease-centric subdomains of such large medical vocabularies. The first method is based on lexically querying the ontology with an iteratively extended set of seed queries. The second method is based on manual mapping between concepts from a medical guideline document and ontology concepts. Both methods include concept-expansion over subsumption and equality relations. We use both methods to determine a breast-cancer-centric subdomain of the SNOMED CT ontology. Our experiments show that the two methods produce a considerable overlap, but they also yield a large degree of complementarity, with interesting differences between the sets of concepts that they return. Analysis of the results reveals strengths and weaknesses of the different methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.