The Tat protein of immunodeficiency viruses is the main activator of viral gene expression. By binding specifically to its cognate site, the transactivator response element (TAR), Tat mediates a strong induction of the production of all viral transcripts. In seeking a new chemical solution to inhibiting viral protein-RNA interactions, we recently identified inhibitors of the viral Tat protein from the bovine immunodeficiency virus (BIV) using conformationally constrained beta-hairpin peptidomimetics. We identified a micromolar ligand, called BIV2, and the structure of its complex with BIV TAR was determined by NMR. In this work, we demonstrate that this chemistry can rapidly yield highly potent and selective ligands. On the basis of the structure, we synthesized and assayed libraries of mutant peptidomimetics. Remarkably, we were able in just a few rounds of design and synthesis to discover nanomolar inhibitors of the Tat-TAR interaction in BIV that selectively bind the BIV TAR RNA compared to RNA structures as closely related as the HIV-1 TAR or RRE elements. The molecular recognition principles developed in this study have been exploited in discovering related peptidomimetic inhibitors of the Tat-TAR interaction in HIV-1.
Bound to please: Binding of the Rev protein to HIV‐1 RRE RNA is essential for virus replication. A strategy for the discovery of Rev‐RRE inhibitors, based on the use of protein epitope mimetics, is described. Template‐bound β‐hairpin peptidomimetics (see picture, orange) are designed that mimic the Rev helical epitope (green). The mimetics bind with high affinity and selectivity to the target RNA, and have potential for development into novel anti‐viral drugs.
Das viral codierte Rev-Protein (Rev) des humanen Immundefizienzvirus Typ-1 (HIV-1) übernimmt eine entscheidende Rolle bei der viralen Replikation, indem es den Transport von ungespleißter und partiell gespleißter viraler RNA aus dem Zellkern in das Zytoplasma infizierter Zellen reguliert. [1, 2] Dabei bindet Rev zuerst an einen spezifischen Bereich der mRNA von HIV-1 -das Rev-Erkennungselement RRE (Rev responsive element) in der Stammschleife IIB (Abbildung 1). Anschließend lagern sich ca. zehn weitere Rev-Moleküle über Protein-Protein-oder Protein-RNA-Wechselwirkungen zusammen und bedecken so das komplette RRE.[3] Wegen ihrer Bedeutung für die virale Replikation ist die Wechselwirkung zwischen Rev und RRE ein interessantes, bisher jedoch ungenutztes Target für die antivirale Therapie.Für die Rev-Erkennung der hochaffinen RRE-Bindungsstelle ist eine kleine N-terminale argininreiche Domäne aus 17 Aminosäuren zuständig (Abbildung 1, unten).[4] NMRspektroskopische und biochemische Untersuchungen ergaben, dass durch Veränderungen der regelmäßigen A-Konformation in RRE-RNA eine tiefe Furche gebildet wird, die durch das Peptid erkannt wird. [5][6][7][8][9] In ungebundener Form liegt das Protein ungefaltet vor, nimmt aber im Komplex mit RRE eine a-helicale Konformation an. [6,9] Bisher beschränkte sich die Suche nach RRE-bindenden Wirkstoffen hauptsächlich auf Derivate bekannter Aminoglycosid-Antibiotika, auf Diphenylfurane und auf ähnliche Verbindungen, die in der zugänglichen flachen Furche der DNA binden, [10] z. B. Proflavine. [11,12]
A variety of cyclopropylphosphonates were prepared in moderate to good yields by Michael Induced Ring Closure of trialkyl phosphites with the corresponding b-bromoalkylidene cyanoacetates and malonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.