Near-infrared (NIR) spectroscopy occupies a specific spot across the field of bioscience and related disciplines. Its characteristics and application potential differs from infrared (IR) or Raman spectroscopy. This vibrational spectroscopy technique elucidates molecular information from the examined sample by measuring absorption bands resulting from overtones and combination excitations. Recent decades brought significant progress in the instrumentation (e.g., miniaturized spectrometers) and spectral analysis methods (e.g., spectral image processing and analysis, quantum chemical calculation of NIR spectra), which made notable impact on its applicability. This review aims to present NIR spectroscopy as a matured technique, yet with great potential for further advances in several directions throughout broadly understood bio-applications. Its practical value is critically assessed and compared with competing techniques. Attention is given to link the bio-application potential of NIR spectroscopy with its fundamental characteristics and principal features of NIR spectra.
Near-infrared (12,500–4,000 cm −1 ; 800–2,500 nm) spectroscopy is the hallmark for one of the most rapidly advancing analytical techniques over the last few decades. Although it is mainly recognized as an analytical tool, near-infrared spectroscopy has also contributed significantly to physical chemistry, e.g., by delivering invaluable data on the anharmonic nature of molecular vibrations or peculiarities of intermolecular interactions. In all these contexts, a major barrier in the form of an intrinsic complexity of near-infrared spectra has been encountered. A large number of overlapping vibrational contributions influenced by anharmonic effects create complex patterns of spectral dependencies, in many cases hindering our comprehension of near-infrared spectra. Quantum mechanical calculations commonly serve as a major support to infrared and Raman studies; conversely, near-infrared spectroscopy has long been hindered in this regard due to practical limitations. Advances in anharmonic theories in hyphenation with ever-growing computer technology have enabled feasible theoretical near-infrared spectroscopy in recent times. Accordingly, a growing number of quantum mechanical investigations aimed at near-infrared region has been witnessed. The present review article summarizes these most recent accomplishments in the emerging field. Applications of generalized approaches, such as vibrational self-consistent field and vibrational second order perturbation theories as well as their derivatives, and dense grid-based studies of vibrational potential, are overviewed. Basic and applied studies are discussed, with special attention paid to the ones which aim at improving analytical spectroscopy. A remarkable potential arises from the growing applicability of anharmonic computations to solving the problems which arise in both basic and analytical near-infrared spectroscopy. This review highlights an increased value of quantum mechanical calculations to near-infrared spectroscopy in relation to other kinds of vibrational spectroscopy.
This review article focuses on the principles and applications of miniaturized near‐infrared (NIR) spectrometers. This technology and its applicability has advanced considerably over the last few years and revolutionized several fields of application. What is particularly remarkable is that the applications have a distinctly diverse nature, ranging from agriculture and the food sector, through to materials science, industry and environmental studies. Unlike a rather uniform design of a mature benchtop FTNIR spectrometer, miniaturized instruments employ diverse technological solutions, which have an impact on their operational characteristics. Continuous progress leads to new instruments appearing on the market. The current focus in analytical NIR spectroscopy is on the evaluation of the devices and associated methods, and to systematic characterization of their performance profiles.
By near-infrared (NIR) spectroscopy and anharmonic density functional theory (DFT) calculations, we investigate five kinds of saturated and unsaturated carboxylic acids belonging to the group of short-chain fatty acids: propionic acid, butyric acid, acrylic acid, crotonic acid, and vinylacetic acid. The experimental NIR spectra of these five kinds of carboxylic acids are reproduced by quantum chemical calculations in a broad spectral region of 7500-4000 cm and for a wide range of concentrations. By employing anharmonic GVPT2 calculations on DFT level, a detailed interpretation of experimental spectra is achieved, elucidating structure-spectra correlations of these molecules in the NIR region. We emphasize the spectral features due to saturated and unsaturated alkyl chains, the location of a C═C bond within the alkyl chain, and the dimerization of carboxylic acids. In particular, the existence of a terminal C═C bond leads to the appearance of highly specific NIR bands. These pronounced bands are located at wavenumbers where no overlapping with other structure-specific bands occurs, thus making them good structural markers. Most of the spectral differences between these two groups of molecules remain subtle, and would be difficult to reliably ascribe without quantum chemically calculated NIR spectra. Moreover, anharmonic DFT calculations provide insights on the manifestation of hydrogen bonding through distinctive spectral features corresponding to cyclic dimers. The resulting spectral baseline elevation is common for all five investigated carboxylic acids, and remains consistent with previous results on acetic acid.
In the present work the performances of one benchtop and two different types of miniaturized near-infrared (NIR)-spectrometers were tested and compared for the first time by the determination of the rosmarinic acid (RA) content of dried and powdered Rosmarini folium. The recorded NIR spectra were utilized in hyphenation with multivariate data analysis (MVA) to calculate Partial Least Squares (PLS) regression models. Quality parameters obtained from Cross Validation (CV) revealed that the benchtop NIR-device "NIRFlex N-500 FT-NIR spectrometer" achieved the best result with a R of 0.91 and a RPD of 3.27. The miniaturized NIR-device "MicroNIR 2200 spectrometer" showed a satisfying calibration quality with a R of 0.84 and a RPD of 2.46. The miniaturized NIR-device "ThermoScientific microPHAZIR" with a R of 0.73 and a RPD of 1.88 was less precise and needs to be improved. The measured spectra of the different devices were additionally investigated by two-dimensional correlation spectroscopy (2D-COS) analysis, which supported the performed PLS regression models as well as identified the discrepancies for microPHAZIR and MicroNIR 2200 compared to NIRFlex N-500. With the aim to obtain a better understanding of the factors which determine the analyzed PLS regression models, the NIR spectrum of RA was reproduced through application of fully anharmonic quantum chemical calculation. A good agreement between the experimental and theoretical NIR spectra and detailed band assignments of RA were obtained in the 8000-4000 cm wavenumber region. Subsequently, this enabled us to attribute the main influences in the regression coefficients plots. This study demonstrated that the performance of NIR spectroscopy with benchtop and miniaturized devices as a fast and non-invasive technique is able to replace time- and resource-consuming analytical tools. Referring to the developed application of the RA content quantification this work is especially interesting for the continuous growing phytopharmaceutical industry and its quality control. The results reveal the importance of monitoring the performances of available NIR-spectrometers in every analytical area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.