In this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on the basis of the measurement data for dynamic scenarios in an indoor environment. The obtained results clearly prove the validity of the proposed DL approach in the UWB WBANs and high (over 98.6% for most cases) efficiency for LOS and NLOS conditions classification.
In the article, a novel bitrate adaptation method for data streams allocation in heterogeneous Wireless Body Area Networks (WBANs) is presented. The efficiency of the proposed algorithm was compared with other known algorithms of data stream allocation using computer simulation. A dedicated simulator has been developed using results of measurements in the real environment. The usage of the proposed adaptive data streams allocation method by transmission rate adaptation based on radio channel parameters can increase the efficiency of resources’ usage in a heterogeneous WBANs, in relation to fixed bitrates transmissions and the use of well-known algorithms. This increase of efficiency has been shown regardless of the mobile node placement on the human body.
Abstract:In the article an off-body narrowband and ultra-wide band channel model for body area networks in a ferryboat environment is described. Considering the limited number of publications there is a need to develop an off-body channel model, which will facilitate the design of radio links, both from the multimedia services provider and the security point of view, for body area networks in this atypical environment. A mobile heterogeneous measurement stand, using radio distance measurements, which consists of three types of devices: miniaturized mobile nodes, stationary reference nodes, and a data acquisition server, was developed. A detailed analysis of both radio channels' parameters was carried out. An analysis of system loss for off-body communication, including mean system loss, large-scale fading (corresponding to body shadowing), and small-scale fading (associated with the multipath phenomenon), both for 868 MHz narrowband and for 6489 MHz ultra-wide band channels, was performed. A statistical analysis of the obtained system loss model parameters was also carried out; good fit to the empirical data is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.