This paper describes an approach for intent classification and tagging on embedded devices, such as smart watches. We describe a technique to train neuronal networks where the final neuronal network weights are binary. This enables memory bandwidth optimized inference and efficient computation even on constrained/embedded platforms. The flow of the approach is as follows: tf-idf word selection method reduces the number of overall weights. Bag-of-Words features are used with a feedforward and recurrent neuronal network for intent classification and tagging, respectively. A novel double Gaussian based regularization term is used to train the network. Finally, the weights are almost clipped lossless to −1 or 1 which results in a tiny binary neuronal network for intent classification and tagging. Our technique is evaluated using a text corpus of transcribed and annotated voice queries. The test domain is "lights control". We compare the intent and tagging accuracy of the ultra-compact binary neuronal network with our baseline system. The novel approach yields comparable accuracy but reduces the model size by a factor of 16: from 160kB to 10kB.
Abstract. The set of solutions of a Volterra equation in a Banach space with a Carathéodory kernel is proved to be an R δ , in particular compact and connected. The kernel is not assumed to be uniformly continuous with respect to the unknown function and the characterization is given in terms of a B 0 -space of continuous functions on a noncompact domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.