This paper details an experimental study that was performed to investigate the specific heat of microencapsulated phase change material (mPCM) slurry and its heat of fusion at the PCM phase change transition temperature. Six samples (mPCM slurry concentrate with the water solution of propylene glycol used as a main base liquid) were prepared. As the concentrate contains 43.0% mPCM, the actual mass fraction amounts to 8.6, 12.9, 17.2, 21.5, 25.8, and 30.1 wt%, respectively. The thermal delay method was used. Samples were cooled from 50 °C to 10 °C. A higher concentration of microcapsules caused a proportional increase in the specific heat of slurry at the main peak melting temperature. The maximum value of the specific heat changed from 9.2 to 33.7 kJ/kg for 8.6 wt%, and 30.1 wt%, respectively. The specific heat of the mPCM slurry is a constant quantity and depends on the concentration of the microcapsules. The specific heat of the slurry (PCM inside microcapsules in a liquid form) decreased from 4.0 to 3.8 kJ/(kgK) for 8.6 wt%, and 30.1 wt% of mPCM, respectively. The specific heat of the slurry (PCM inside microcapsules in a liquid form) was higher than when the PCM in the microcapsules is in the form of a solid and increased from 4.5 to 5.2 kJ/(kgK) for 8.6 wt% and 30.1 wt% of mPCM, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.