Electroencephalography (EEG) is a non-invasive technique used to record the brain’s evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, group membership classification, and brain-computer interface purposes. This study aimed to systematically review recent advances in ML and DL supervised models for decoding and classifying EEG signals. Moreover, this article provides a comprehensive review of the state-of-the-art techniques used for EEG signal preprocessing and feature extraction. To this end, several academic databases were searched to explore relevant studies from the year 2000 to the present. Our results showed that the application of ML and DL in both mental workload and motor imagery tasks has received substantial attention in recent years. A total of 75% of DL studies applied convolutional neural networks with various learning algorithms, and 36% of ML studies achieved competitive accuracy by using a support vector machine algorithm. Wavelet transform was found to be the most common feature extraction method used for all types of tasks. We further examined the specific feature extraction methods and end classifier recommendations discovered in this systematic review.
The performance of text classification methods has improved greatly over the last decade for text instances of less than 512 tokens. This limit has been adopted by most state-of-the-research transformer models due to the high computational cost of analyzing longer text instances. To mitigate this problem and to improve classification for longer texts, researchers have sought to resolve the underlying causes of the computational cost and have proposed optimizations for the attention mechanism, which is the key element of every transformer model. In our study, we are not pursuing the ultimate goal of long text classification, i.e., the ability to analyze entire text instances at one time while preserving high performance at a reasonable computational cost. Instead, we propose a text truncation method called Text Guide, in which the original text length is reduced to a predefined limit in a manner that improves performance over naive and semi-naive approaches while preserving low computational costs. Text Guide benefits from the concept of feature importance, a notion from the explainable artificial intelligence domain. We demonstrate that Text Guide can be used to improve the performance of recent language models specifically designed for long text classification, such as Longformer. Moreover, we discovered that parameter optimization is the key to Text Guide performance and must be conducted before the method is deployed. Future experiments may reveal additional benefits provided by this new method.
Over a decade ago, the formation of neutrophil extracellular traps (NETs) was described as a novel mechanism employed by neutrophils to tackle infections. Currently applied methods for NETs release quantification are often limited by the use of unspecific dyes and technical difficulties. Therefore, we aimed to develop a fully automatic image processing method for the detection and quantification of NETs based on live imaging with the use of DNA-staining dyes. For this purpose, we adopted a recently proposed Convolutional Neural Network (CNN) model called Mask R-CNN. The adopted model detected objects with quality comparable to manual counting—Over 90% of detected cells were classified in the same manner as in manual labelling. Furthermore, the inhibitory effect of GW 311616A (neutrophil elastase inhibitor) on NETs release, observed microscopically, was confirmed with the use of the CNN model but not by extracellular DNA release measurement. We have demonstrated that a modern CNN model outperforms a widely used quantification method based on the measurement of DNA release and can be a valuable tool to quantitate the formation process of NETs.
The COVID-19 pandemic has changed our lifestyles, habits, and daily routine. Some of the impacts of COVID-19 have been widely reported already. However, many effects of the COVID-19 pandemic are still to be discovered. The main objective of this study was to assess the changes in the frequency of reported physical back pain complaints reported during the COVID-19 pandemic. In contrast to other published studies, we target the general population using Twitter as a data source. Specifically, we aim to investigate differences in the number of back pain complaints between the pre-pandemic and during the pandemic. A total of 53,234 and 78,559 tweets were analyzed for November 2019 and November 2020, respectively. Because Twitter users do not always complain explicitly when they tweet about the experience of back pain, we have designed an intelligent filter based on natural language processing (NLP) to automatically classify the examined tweets into the back pain complaining class and other tweets. Analysis of filtered tweets indicated an 84% increase in the back pain complaints reported in November 2020 compared to November 2019. These results might indicate significant changes in lifestyle during the COVID-19 pandemic, including restrictions in daily body movements and reduced exposure to routine physical exercise.
The COVID-19 pandemic has had unprecedented social and economic consequences in the United States. Therefore, accurately predicting the dynamics of the pandemic can be very beneficial. Two main elements required for developing reliable predictions include: (1) a predictive model and (2) an indicator of the current condition and status of the pandemic. As a pandemic indicator, we used the effective reproduction number (Rt), which is defined as the number of new infections transmitted by a single contagious individual in a population that may no longer be fully susceptible. To bring the pandemic under control, Rt must be less than one. To eliminate the pandemic, Rt should be close to zero. Therefore, this value may serve as a strong indicator of the current status of the pandemic. For a predictive model, we used graph neural networks (GNNs), a method that combines graphical analysis with the structure of neural networks. We developed two types of GNN models, including: (1) graph-theory-based neural networks (GTNN) and (2) neighborhood-based neural networks (NGNN). The nodes in both graphs indicated individual states in the US states. While the GTNN model’s edges document functional connectivity between states, those in the NGNN model link neighboring states to one another. We trained both models with Rt numbers collected over the previous four days and asked them to predict the following day for all states in the USA. The performance of these models was evaluated with the datasets that included Rt values reflecting conditions from 22 January through 26 November 2020 (before the start of COVID-19 vaccination in the USA). To determine the efficiency, we compared the results of two models with each other and with those generated by a baseline Long short-term memory (LSTM) model. The results indicated that the GTNN model outperformed both the NGNN and LSTM models for predicting Rt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.