Abstract. Frequent itemset mining is often regarded as advanced querying where a user specifies the source dataset and pattern constraints using a given constraint model. Recently, a new problem of optimizing processing of sets of frequent itemset queries has been considered and two multiple query optimization techniques for frequent itemset queries: Mine Merge and Common Counting have been proposed and tested on the Apriori algorithm. In this paper we discuss and experimentally evaluate three strategies for concurrent processing of frequent itemset queries using FP-growth as a basic frequent itemset mining algorithm. The first strategy is Mine Merge, which does not depend on a particular mining algorithm and can be applied to FP-growth without modifications. The second is an implementation of the general idea of Common Counting for FP-growth. The last is a completely new strategy, motivated by identified shortcomings of the previous two strategies in the context of FP-growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.