Selective laser melting (SLM) is an additive manufacturing technique. It allows elements with very complex geometry to be produced using metallic powders. A geometry of manufacturing elements is based only on 3D computer-aided design (CAD) data. The metal powder is melted selectively layer by layer using an ytterbium laser. This paper contains the results of porosity and microhardness analysis made on specimens manufactured during a specially prepared process. Final analysis helped to discover connections between changing hatching distance, exposure speed and porosity. There were no significant differences in microhardness and porosity measurement results in the planes perpendicular and parallel to the machine building platform surface.
Selective Laser Melting (SLM) is an additive manufacturing technique. It allows to produce elements with very complex geometry using metallic powders. A geometry of manufacturing elements bases only on 3D CAD data. The metal powder is melt selectively layer by layer using ytterbium laser. The paper contains results of porosity and microhardness analysis made on specimens which were manufactured during specially prepared process. Final analysis helped to discover connections between changing hatching distance, exposure speed and porosity. There was no significant differences in microhardness and porosity measurement results in the planes: perpendicular and parallel to the machine building platform surface.
Additive manufacturing (AM) is one of the recently studied research areas, due to its ability to eliminate different subtractive manufacturing limitations, such as difficultly in fabricating complex parts, material wastage, and numbers of sequential operations. Laser-powder bed fusion (L-PBF) AM for SS316L is known for complex part production due to layer-by-layer deposition and is extensively used in the aerospace, automobile, and medical sectors. The process parameter selection is crucial for deciding the overall quality of the SS316L build component with L-PBF AM. This review critically elaborates the effect of various input parameters, i.e., laser power, scanning speed, hatch spacing, and layer thickness, on various mechanical properties of AM SS316L, such as tensile strength, hardness, and the effect of porosity, along with the microstructure evolution. The effect of other AM parameters, such as the build orientation, pre-heating temperature, and particle size, on the build properties is also discussed. The scope of this review also concerns the challenges in practical applications of AM SS316L. Hence, the residual stress formation, their influence on the mechanical properties and corrosion behavior of the AM build part for bio implant application is also considered. This review involves a detailed comparison of properties achievable with different AM techniques and various post-processing techniques, such as heat treatment and grain refinement effects on properties. This review would help in selecting suitable process parameters for various human body implants and many different applications. This study would also help to better understand the effect of each process parameter of PBF-AM on the SS316L build part quality.
The paper is focused on the examination of the internal quality of joints created in a multi-material additive manufacturing process. The main part of the work focuses on experimental production and non-destructive testing of restrained joints of modified PLA (polylactic acid) and ABS (Acrylonitrile butadiene styrene) three-dimensional (3D)-printed on RepRap 3D device that works on the “open source” principle. The article presents the outcomes of a non-destructive materials test in the form of the data from the Laser Amplified Ultrasonography, microscopic observations of the joints area and tensile tests of the specially designed samples. The samples with designed joints were additively manufactured of two materials: Specially blended PLA (Market name—PLA Tough) and conventionally made ABS. The tests are mainly focused on the determination of the quality of material connection in the joints area. Based on the results obtained, the samples made of two materials were compared in the end to establish which produced material joint is stronger and have a lower amount of defects.
The present paper aims to analyze the microstructure, microhardness, tensile properties, and low cycle fatigue (LCF) behavior of friction stir welded (FSW) butt joints. The material used in this study was the 5 mm thick 5083 H111 aluminum alloy sheet. Butt joints of AA 5083 H111 were manufactured at different operating parameters of the FSW process. The effect of the welding parameters on microstructure, microhardness, and tensile properties was investigated. Based on microstructure analysis and strength tests, the most favorable parameters of the FSW process were settled on the point of view of weld quality. Then, LCF tests of base material and friction stir welded specimens made of 5083 H111 were carried out for the examined welded samples under selected friction stir welding parameters. The process of low-cycle fatigue of 5083 H111 aluminum alloy was characterized by cyclic hardening for both: base material and FSW joint. It was revealed by a decrease in the width of the hysteresis loop with the simultaneous significant increase in the values of the range of stress. It was determined that fatigue cracks are initiated by cyclic slip deformation due to local stress concentration from the surface in the corner of the samples for the base material and the heat-affected zone for FSW joints. For all tested strain amplitudes, the fatigue crack propagation region is characterized by the presence of fatigue striation with secondary cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.