The evolution of terrestrial tetrapod species heralded a transition in locomotor strategies. While most fish species use the undulating contractions of the axial musculature to generate propulsive force, tetrapods also rely on the appendicular muscles of the limbs to generate movement. Despite the fossil record generating an understanding of the way in which the appendicular skeleton has evolved to provide the scaffold for tetrapod limb musculature, there is, by contrast, almost no information as to how this musculature arose. Here we examine fin muscle formation within two extant classes of fish. We find that in the teleost, zebrafish, fin muscles arise from migratory mesenchymal precursor cells that possess molecular and morphogenetic identity with the limb muscle precursors of tetrapod species. Chondrichthyan dogfish embryos, however, use the primitive mechanism of direct epithelial somitic extensions to derive the muscles of the fin. We conclude that the genetic mechanism controlling formation of tetrapod limb muscles evolved before the Sarcopterygian radiation.
Since Miller's morphological description, the Drosophila leg musculature and its formation has not been revisited. Here, using a set of GFP markers and confocal microscopy, we analyse Drosophila leg muscle development, and describe all the muscles and tendons present in the adult leg. Importantly, we provide for the first time evidence for tendons located internally within leg segments. By visualising muscle and tendon precursors,we demonstrate that leg muscle development is closely associated with the formation of internal tendons. In the third instars discs, in the vicinity of tendon progenitors, some Twist-positive myoblasts start to express the muscle founder cell marker dumbfounded (duf). Slightly later, in the early pupa, epithelial tendon precursors invaginate inside the developing leg segments, giving rise to the internal string-like tendons. The tendon-associated duf-lacZ-expressing muscle founders are distributed along the invaginating tendon precursors and then fuse with surrounding myoblasts to form syncytial myotubes. At mid-pupation, these myotubes grow towards their epithelial insertion sites, apodemes, and form links between internally located tendons and the leg epithelium. This leads to a stereotyped pattern of multifibre muscles that ensures movement of the adult leg.
Tubulogenesis is an essential component of organ development, yet the underlying cellular mechanisms are poorly understood. We analyze here the formation of the Drosophila melanogaster cardiac lumen that arises from the migration and subsequent coalescence of bilateral rows of cardioblasts. Our study of cell behavior using three-dimensional and time-lapse imaging and the distribution of cell polarity markers reveals a new mechanism of tubulogenesis in which repulsion of prepatterned luminal domains with basal membrane properties and cell shape remodeling constitute the main driving forces. Furthermore, we identify a genetic pathway in which roundabout, slit, held out wings, and dystroglycan control cardiac lumen formation by establishing nonadherent luminal membranes and regulating cell shape changes. From these data we propose a model for D. melanogaster cardiac lumen formation, which differs, both at a cellular and molecular level, from current models of epithelial tubulogenesis. We suggest that this new example of tube formation may be helpful in studying vertebrate heart tube formation and primary vasculogenesis.
We have cloned two novel homeobox genes which are the mouse (Lbx1) and human (LBX1) homologs of the Drosophila lady bird genes. They are highly related not only within the coding region but also in 5' and 3' untranslated regions. Several amino acid residues inside and around the homeodomain, have been conserved between the mammalian Lbx genes and their Drosophila counterparts. The mouse Lbx1 gene is located on chromosome 19 (region D) and the human LBX1 gene maps to the related q24 region of chromosome 10, known as a breakpoint region in translocations t(7;10) and t(10;14) involved in T-cell leukemias. Thus, LBX1 and the protooncogene HOX11 map to a common chromosomal region, as do their Drosophila counterparts, the lady bird and 93Bal genes. The mouse Lbx1 gene is specifically expressed during embryogenesis. From 10.5 days of gestation, Lbx1 expression is detected in the central nervous system and some developing muscles. In the CNS, Lbx1 transcripts are expressed in the dorsal part of the mantle layer of the spinal cord and hindbrain, up to a sharp boundary within the developing metencephalon. Thus, Lbx1 may be inolved in spinal cord and hindbrain differentiation and/or patterning, and its restricted expression pattern could depend upon evolutionarily conserved inductive signals involving some mammalian Wnt and Pax genes, as is the case for Drosophila lady bird genes and wingless or gooseberry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.